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T.D. Intégrales généralisées.

� Convergence d’une intégrale généralisée d’une fonction continue sur un intervalle semi-ouvert ou ouvert
(✐ « La convergence est traduite en termes de limites portant sur une primitive »). Cas particulier d’une
fonction prolongeable par continuité.

� Propriétés des intégrales convergentes : linéarité, relation de Chasles, positivité, croissance.

� Adaptation de l’intégration par parties aux intégrales impropres. Adaptation de la formule de changement
de variable pour les intégrales impropres.

� Théorème de convergence par comparaison pour deux fonctions positives f et g telles que f ≤ g.

� Convergence absolue d’une intégrale généralisée. Condition suffisante pour obtenir la convergence de l’in-
tégrale.

� L’intégrale

∫ ∞

−∞
e−x2/2dx converge et vaut

√
2π.

Exercice 1 ✶ :

Dire dans chacun des cas suivants si l’intégrale est impropre. Si oui, étudier sa nature et donner sa valeur en cas
de convergence.
✐ Remarques : On ne cherchera pas à calculer la valeur de l’intégrale dans les cas b) et h), pour e) et g) une IPP
permet d’obtenir la valeur de I et, pour f) et i), on pourra faire les changements de variables respectifs :t =

√
x et

u = ln(t)).

a)I =

∫ ∞

0

te−tdt; b)I =

∫ 1

0

ln(1 + t)

t
dt; c)

∫ ∞

0

dx

(x+ 1)(x+ 2)
; d)I =

∫ +∞

−∞

e−t

(1 + e−t)2
dt

e)I =

∫ +∞

−∞

dx

(1 + x2)2
; f)I =

∫ +∞

0

dx

(x+ 1)
√
x
; g)I =

∫ +∞

1

arctan(t)

t2
dt; h)I =

∫ +∞

−1

dt
√
1 + t3

i)I =

∫ +∞

0

cos(ln(t))dt; j)I =

∫ +∞

0

e−t2dt; k)I =

∫ +∞

1

e−2t2+4t−1dt

Exercice 2 ✶✶ :

➀ Montrer la convergence de

∫ +∞

1

ln(t)

t2
dt.

➁ Démontrer que I =

∫ +∞

1

ln(x)

1 + x2
dx et J =

∫ 1

0

− ln(x)

1 + x2
dx convergent.

➂ En déduire la convergence et la valeur de I =
∫∞
0

ln(x)

1 + x2
dx.

Exercice 3 ✶ :

Pour tout x ∈ R, on pose f(x) = arctan(1 + x)− arctan(x).

➀ Montrer que l’intégrale I =

∫ +∞

1

dt

t2
converge.

1



➁ A l’aide du théorème des accroissements finis, démontrer que ∀x ≥ 1, f(x) ≤
1

x2
.

En déduire que l’intégrale

∫ ∞

1

f(t)dt est convergente.

➂ Pour tout couple (A,B) ∈ R2, démontrer que

∫ B

A

f(t)dt =

∫ B+1

B

arctan(t)dt−
∫ A+1

A

arctan(t)dt.

➃ En déduire que

∫ ∞

−∞
f(t)dt converge et vaut π.

Exercice 4 ✶ :

p et λ désignent deux réels strictement positif et I(p, λ) =

∫ ∞

0

λpxp−1e−λxdx.

On note par ailleurs Γ(p) = I(p, 1).

➀ Montrer que pour tout x ∈ R∗
+, xp−1e−λx ≤ xp−1 puis montrer que pour tout a réel, strictement positif,∫ a

0

xp−1dx converge (✐ remarque : on pensera à distinguer le cas p ≥ 1 du cas 0 < p < 1).

En déduire la convergence de l’intégrale I(p, λ) à la borne zéro.

➁ Déterminer lim
x→+∞

xp+1e−λx et en déduire que pour x suffisamment grand, 0 ≤ xp−1e−λx ≤
1

x2
.

En déduire la convergence de l’intégrale I(p, λ) à la borne +∞.

➂ En effectuant le changement de variable x =
u

λ
, montrer que I(p, λ) = Γ(p).

➃ Calculer Γ(1) et montrer, à l’aide d’une intégration par parties, que Γ(p+ 1) = pΓ(p).
En déduire que pour tout n entier naturel non nul, Γ(n) = (n− 1)!.

➄ Soit g définie par g(u) = 0 si u ≤ 0 et g(u) =
1

Γ(p)
λpup−1e−λu sinon.

On dira qu’une fonction f est une densité de probabilité si f est continue ou continue par morceaux sur R, f est

positive et

∫ ∞

−∞
f(t)dt = 1. Montrer que g est une densité de probabilité.

➅ Montrer que

∫ ∞

−∞
ug(u)du et

∫ ∞

−∞
u2g(u)du convergent et calculer leurs valeurs.
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