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Devoir surveillé 5 : Algebre linéaire

Probléeme 1 :

1 Résultats préliminaires

1. a) On calcule les inverses par I'une des méthodes vues en cours. Par exemple, pour I'inversi-

x a
bilité de D3 on pourra écrire : Soit X = [y | et Y = [ b
z c
y =a r =c
DX =Y &z =besqy =as X
r =c z =b
001
Conclusion : | D est inversible et D;' = [ 1 0 0
010
0001
. . : 4 | 1000
De méme, Dy est inversible et D, = 0100
0010

b) Plusieurs réponses sont possibles :

i. On raisonne comme dans la question précédente et on passe par la résolution de (5)

par simple permutation circulaire des lignes, a savoir : Ly <= Ly, <= Ly < ---

D,X =Y, soit :
o 1 0 --- 0 1
T2
0 : =
0o . . o1 Tp-1
1 0 -+ --- 0 Lp
Ly---
Soit | D, inversible et D1 =P

= a1 X1 = Qyp

= a2 X2 = ax
PIND S

= Qp—1 Tp—1 = Qp—2

= ap \Lp = ap—1

ii. On utilise I'indication de 1’énoncé et d’apres la question précédente, on conjecture que
D,, est inversible et que son inverse est sa transposée, que 1'on notera D; . On prouve
la conjecture en calculant le produit DPDZ :soit A = Dng, et a; ; le coefficient de A

sur la ligne ¢ et la colonne j.

— Rédaction 1 : On utilise la définition du produit, a savoir, si on note d; ; les coeffi-
cients de D, et dj ; les coefficients D" :

p p
T
ij = E dikdy,; = E di ik
k=1 k=1
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1 sik=i+1

or,sii€l,p—1],ona:d= .
0 sinon

1 sik=i+l=j+1ci=]

0 sinon

Des lors a; ; = {

P

et a,; = Zd wdip=1sij=pcardyp, =1 k=1..
k=1

— Rédaction 2 : « a la main » Ce coefficient a; ; est obtenu en faisant le produit (ma-
triciel) de la ligne i de D, par la colonne j de DZ , dont les coefficients sont ceux de
la ligne j de D,,. Or chaque ligne de D, ne comporte qu'un seul 1, qui se trouve en
position i + 1 pour la ligne i (position 1 pour la ligne p); le 1 de la ligne i est donc
dans la méme position que celui de la ligne j si et seulement ¢ = j, donc a;; = 1 si
1 = j et 0 sinon.

Conclusion :| Tout ca prouve que A = I,,, ce qui montre que D, est inversible d’inverse D;,F.

2. On reconnait la somme des termes d’'une suite géométrique de raison différente de 1, puisque

ik 2ir\ K L.
Zr=¢e » :(ep> . On en déduit :

=5 =0

k=0 P 1-evr

p—1

Géométriquement, %Z 21, est I'affixe du barycentre des points Ay, ..., A,_1, et on a trouvé

que ce barycentre est le centre O du cercle sur lequel sont placés ces points.

3. Soit z un complexe non nul; on peut 'écrire z = re’

% ou 7 est un réel strictement positif et @

un réel quelconque. On a alors :

P =1 = PP =1 — =1 <= r=1
dk € Z,pf = 2kn k€ Z,0 =2kn/p

2 Etude d’un modéle de diffusion sur le cercle

5. 11 s’agit de relier la loi de U,y a celle de U,,. On va utiliser le systeme complet d’événements
{(Un = k) }reop-17 et la formule des probabilités totales :

—_

p—
P(Un—H = Z) = P(Un:j)(Un+1 = Z) X P(Un = ])

J

Il
=)

Commencons en distinguant les casi =0eti=p—1:

Pour 1 =0:

1 .
P(Un:pfl)(Un-i—l = 0) = 5 = ]P)(Unzl)(Un-i-l = O) et ]P)(Un:j)(Un-i—l = 0) = 0, V2 S ] S D — 2.
Soit

B(Upsr = 0) = 5 (B(U, = 1) + B(U, = p— 1))

| —
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— Pouri=p—1:

1
P(U7L:p_2)(Un+1 - p - 1) - 5 = ]P)(Unzo)(Un+1 - p - 1) et P(Un:j)(Un"Fl = 0) - 07 \V/j e
[1,p— 1]\ {p — 2}. Soit

P(Unpr=p—1) = s (P(U, =0) + P(U, =p — 2))

N —

— Pour1 <1 <p—2:
Lorsque la particule se trouve en A;, elle ne peut se déplacer que vers A;;, ou A,_; et ceci
avec probabilité 1/2. On a donc :

IP’(UnH:z'):%xP(Un:i—l)Jr%xIP’(Un:iJrl)
Ceci montre qu'on a bien une formule du type X, .1 = MX,,, ou M est la matrice carrée
dont les coefficients sont les P(y,—j)(Upt1 = 7). Autrement dit la matrice qui a des 1/2 sur
la surdiagonale, la sousdiagonale, et les coins en haut a droite et en bas a gauche, et des 0
partout ailleurs. Ou encore :

010 -0 1
101 00

1. . . T

My=5|: : = ~(D, + DY).
00 01
00 10

0
1
1
0
.OnaXn:Mng,oﬁon . .
0

. La formule demandée découle de celle obtenue a la question 5) et de la propriété D = Dg
de la question 1)b).

.- a) On cherche donc les valeurs de A € C telles que rg(Ms — Al3) < 3; on calcule ce rang
par pivot, et on trouve apres calculs (je ne les ai pas rédigés mais ils doivent figurer sur la

copie) :
11 —2) 1 sid=—1/2
rg(Ms—A3)=rg| 0 —2A—1 1+ 2\ =< 2 siA=1
0 0 (14+2XN)(2 —2)) 3 sinon

b) On détermine ensuite les noyaux demandés, a partir de la derniere matrice du calcul ci-
dessus :

E 1y = Ker = Vect{(—1,1,0), (—1,0,1)}.

o O =

1
0
0

o O =

Conclusion : | E_y/; = Vect{uy,us} ot uy = (—1,1,0) et uy = (1,0, 1)

1 =2
-3 3 = Vect((1,1,1)).
0 0

E, = Ker

O O =

Conclusion : | E; = Vect{us} ot uz = (1,1,1)
Par ailleurs, on vérifie comme nous le demande 1’énoncé, que :
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1
Conclusion : | f3(u1) = 3t fa(ug) = gl et fs(us) = us
—-1/2 0 0
Montrons que M3 et D = 0 —1/2 0 | sont semblables : Cela découle immédia-
0 0 1

tement de la question précédente, a condition de montrer que B’ = (uq, ug, uz) est une base
de R3. En effet, si c’est le cas, alors par construction, Mg/ (f3) = D.

Montrons donc que (uy,us, uz) est une base de R : C’est une famille de cardinal égale &
3 qui est la dimension de R3. Il suffit de montrer que c¢’est une famille libre pour montrer
que c’est une base de R3. On fait le choix ici de calculer le rang de cette famille de vecteurs
en passant par le rang de la matrice des coordonnées de cette famille de vecteur qui n’est
autre que la matrice de passage qui est demandée en fin de question.

11 1 -1 1 1 -1 1
rg{uy, ug,us} =rg | 1 0 1]=rg| O 2l =rg|l 0 -1 2| =3
0 1 1 0 1 1 0 0 3

On peut donc conclure que B’ = (uy, ug, uz) est une base de R3.

-1 -1 1 -1/2 0 0
Conclusion : |Ms;=PDPtavecP=| 1 0 1 |etD= 0 -1/2 0
0o 1 1 0 0 1
Apres calcul, on trouve P~ = 3 -1 -1 2 (& A faire. C’est trées rapide]
1 1 1

D’apres la question 6), X,, est la premiere colonne de Mf. On a, par une récurrence a
écrire dans la copie, pour tout n € N :

M; = pPD"P!

GRS 1/2 1 ~1 2 -1
— 2 (12 1 1 -1 2
s 0 1/2 1)( 111
L[ 212+ 1/2)" 41 —(=1/2)" +1
— Z | —(=1/2)r +1 2( 1/2)n+1 (~1/2)" + 1
S\ C(c12m a1 —(c1/2r 41 2-1/2)" 41

La limite de P(U,, = k) quand n tend vers +oo est donc 1/3, quel que soit k € [0, 2]. Les
trois positions tendent a devenir équiprobables lorsque le nombre de déplacements tend
vers l'infini.
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I
9. Soit X = : un vecteur et A un complexe. On a :
Lp
( To = AT
T3 = A\Igy
D, X =)2X <<= [
Tp = ATp_1
| 21 = Ay,
( To = AT
T3 = N1
<~
x, = Nl
| 21 = NPy
1
A
<— X =0o0u | N=1et X = A2 1
)\p._l

10.

Conclusion : Les valeurs de A pour lesquelles il existe X # 0 avec D, X = AX sont donc les
complexes A tels que AP = 1.

En prenant z; = 1, on obtient qu’il existe p valeurs A\ complexes, a savoir les z, =

e

1

2k

k € [0,p — 1], obtenus a la question I.4. pour lesquelles D, X}, = 2, X} avec X = i

“k
1 1 N |
1 21 Z9 crt Zp—1 ) )
Soit QQ = | . : : . |- On cherche a montrer que QQ est inversible :
R A SR}

& La question qu’il faut se poser c’est, quel est I'intéréet de montrer cette inversibilité. La
réponse est immeédiate si on note que la matrice () est la matrice des coordonnées des vecteurs
X}, obtenus a la question précédente (puisque zp = 1). Des lors, montrer U'inversibilité de @
c’est montrer que son rang vaut p et donc que la famille {Xg---, X, 1} est libre...

Allons-y et, conformément & I’énoncé, on pose R = 'Q et on considere le systeme homogene

Qo
\ al
(S): RX =0o0u X =
ap—1
— Montrons que 1, zy,- -+ z,_1 sont racines du polynéme P(X) = ag+ a1 X + -+ a,_1 XP~ :
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11.

12.

Le systeme (S) donne :

RX=00QX=0<

—_ = =

ag+ar+---+ap =

o1 ag 0
-1
21 oo Z;f aq 0
-1 . = .
o oo || ;
p—1
prl e Zp—l ap—l 0
0
p—1

ap +zia1 + -+ 2] ap1 =0

0

—1
e ag+ zmar+ -+ 25 a, =

p—1 _
(a0 + 2p—101 + -+ 2, 1051 =0
ou encre : 1, 21, -+, z,_1 sont racines du polynome P(X) =ag+ o X + -+ a,_1 XP 1.

— Concluons que la seule solution de (S) est la solution nulle : 11 suffit de dire que le po-
lynome P est un polynome de degrés inférieur ou égale a p — 1. Or il possede p racines
distinctes (cf. 1.4.).

Conclusion : | P est le polynome nul ou encore ayp =0 =a; = ---ap_;

— On en déduit que le systeme homogene (S) : RX = 0 admet une unique solution qui est
la solution nulle. C’est un systéme de Cramer. La matrice R = ‘Q associée au systéme est
donc inversible.

Et si on rappelle que 1g(Q) = rg('Q), alors rg(Q) = rg('Q) = p = ordre(Q).
Conclusion : ’Q est inversible‘

Posons X = Mg, (vx) ou By désigne la base canonique de CP. Montrons que la famille
(vo, v1, -+ ,Up_1) est une base de CP : Cela découle immédiatement de la question précédente.
Le rang de la famille (vg,--- ,v,—1) est égale au rang de la matrice des coordonnées de cette
famille de vecteur, autrement dit la matrice Q.

Des lors, rg(vg, - -+ ,vp,—1) = rg(Q) = p. Ce qui prouve que cette famille est libre.

Par ailleurs Card(vo, - - - ,v,—1) = p = dim(CP).
Conclusion : |B" = (vy, -+ ,v,_1) est une base de CP.

Soit D, = Mp,(g,) out g, est un endomorphisme de C? et By est sa base canonique.
On sait grace a la question 9. que D, X}, = 2, Xy, soit g,(vx) = 2xVg.
L’expression de la matrice de g, dans la base B” donne immédiatement :

o 0 - o 0

0 = 0 --- 0

Mg =A==
: . . 0
0 -+ oo 0 2z

Et d’apres les formules de changement de base, puisque par construction @) = Pass(Bq, B"),
ona:|D,=0QAQ"!
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13.

14.

15.

Justifions linversibilité de D, et exprimons D]D_1 en fonction de Q) et A, :
La matrice A, est inversible car elle est diagonale et n’a pas de 0 sur sa diagonale.
On en déduit, a I'aide de la formule (AB)~* = B~ A~! pour des matrices A et B inversibles,

que D;l — (Qfl)flAngfl — QA;lel.

1 1
Par ailleurs, grace a la question 7., M, = E(Dp +D,") = 5 (QAPQ_l + QA;lQ_l), soit :
1

Zo + - 0 0

0 z+5 0 0
M,=-Q(A,+AQ ' =2-Q Q!

: . . 0
0 A I s

Zp—1

On peut alors conclure que dans la base B” de CP?, la matrice de 'endomorphisme f, dont M,
est la matrice, est diagonale.

1 0 0 e 0
0 cos(2m/p) 0 . 0
Montrons que M, est semblable a T, = 0 0 cos(4m/p) -+ 0
0 0 0 Cos (2(”_1)”)
p

Il suffit pour ¢a de dire que :

2ikm 2ikm
1 1) 1 - — 2km
2(zk+2k>—2<ep +e P)—COS(p)

& Remarque que les valeurs sur la diagonales sont donc toutes réelles...

On suppose dans cette question que p est impair.

a) Soit k € [1;p — 1]. Déterminons lim cos <2k—”)
n—-+o0o p

¥y

Cette limite vaut 0 car avec les hypotheses sur k£, p étant impair, I'angle % est dans

I'intervalle |0, 2w[\{7}, et donc son cosinus est strictement compris entre —1 et 1.

b) En déduire lim Ty. On commence par rappeler qu’on obtient la puissance n-i¢tme d’une
n—oo

matrice diagonale en élevant les termes de sa diagonale a la puissance n. Des lors :

100 - 0
000 0

limTr = [0 0 0 0

?’L*)OOp e .
000 - 0

¢) Comme lim X,, = lim M}X, = lim QT'Q'Xo = Q- limT? - Q™' X,
on obtient :
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1 0 ... 0 1 1 0 0 1

0O 0 0 ... 0 0 10 0 ... 0 0
lim X, =Q| ¢ ~ .~ Q| : = - - i lQ"
o : L0 0 : 0 0

0 ... ... 0 0 0 1 0 0 0

La premiere colonne de la matrice obtenue par le produit de

1 0 ... ... 0
1 0 0 ... 0
| par Q!
: . .0
1 ... ... 0 0

a tous ses coefficients égaux au coefficient en haut & gauche de Q~'. On ne connait pas ce
coefficient, mais on sait que la somme des coefficients de X,, vaut 1 (et la multiplication
par X, retournera justement cette premiere colonne...), donc la somme de leurs limites
(qui est la limite de la somme) vaut 1 aussi. Donc ce coefficient vaut forcément 1/p.

Interprétons le résultat obtenu : Comme dans le cas particulier p = 3, les différentes
positions possibles pour la particules tendent vers ’équiprobabilité lorsque le nombre de
déplacements tend vers l'infini.

8 /|16
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Probleme 2 : Epreuve Agro-véto A 2011

@ 1l suffit pour répondre a cette question de vérifier I’égalité. Or :

2 1 =2\ [(y'(x) 2y"(x) +y'(x) — 2y(x) Yy (@)
AY =110 0 |-|¥(v) ]| = y"(x) =1 y'(z) | =Y’
01 0 y(z) Y (z) y'(z)

puisque y est solution de (e%) .

Conclusion :

@ Soit A € C et I la matrice identité de taille 3. On pose conformément a I’énoncé :

2 1 =2 1 00 2—X 1 =2
My=\{10 0 |—-1010]= 1 XA 0
01 0 0 01 0 1 =X
a) Soit f € L(R3) tel que A = Mp(f).
-2 21
rg(f)=rg(A)=rg| 0 1 0| en permutant les colonnes C; + C3 < Cy < C}
0 01

Donc rg(A) = ordre(A) ce qui permet d’assurer que A inversible.
Conclusion : |rg(f) = 3, f est bijective, ker(f) = {Ops} et Im(f) = R?

I‘g(f—ldE) :l"g(A—]g) =Trg -1 0 L2 (—LQ —L1

1 =2
1
0 1 -1
1 1 —2
=rg |0 2 Ly <+ 2L35+ Lo
0 1 -1
1 1 =2
=rg|0 =2 2 | =2
0

=)}
=}

D'ou rg(A — I3) = rg(f —idg) = dim(Im(f — idg)) = 2 et donc
dim(ker(f —idg)) =3 —rg(f —idg) = 3 —2 =1 d’apres la formule du rang.

On note par ailleurs, conformément aux indications de 1’énoncé, que :

1 0
A-IL)[1] =(0] & (f —idp)(u) =0
1 0

Donc u = (1,1,1) € ker(f — id3) qui est une droite vectorielle.
Conclusion : |ker(f —ids) = Vect{u} ot u = (1,1,1)
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c)

Pour tout A € R, montrons que ’ensemble des solutions de (.Sy) est un sous-espace vectoriel
de R® qu’on notera Ey. Pour cela, définissons plus clairement Ey en posant :

E\ = {(x1, 72, 73) € R3/(x1, T4, 23) solution de (Sy)} = {X € M3;(R)/M, - X = 0}.
Des lors :
— FE) C R? par définition de E}.
— Ogs est solution évidente de (Sy) donc Ogs € FE)y.
— VX1, X5 € E,, YVa € R, montrons que aX; + X5 € E, :

Il suffit de dire que :

My - (aXy + Xo) = aMy - X1+ My - X,
Or My - X; =0et My Xy =0 car X; et X, sont solutions de (S))

donc M, - (X7 + X3) = 0 ou encore aX; + X, € E),

Conclusion : | E) est un sous-espace vectoriel de R3

Le systeme homogene (S)) n’est pas un systeme de Cramer si et seulement si la matrice
assocée M) n’est pas inversible, ou encore, puisque c¢’est une matrice d’ordre 3 si et seulement
si|rg(My) < 3|
Déterminons en fonction de A le rang de M, (nous prendrons, une fois n’est pas coutume,
le pivot en haut a droite...) :

2-)\ 1 2— A 1 =2
rg(M,) =rg 1 A 0 | =rg 1 0
0 1 -\ AM2-A) 2—A 0
2 1 -2 -2 21
¢ Premier cas : Si A =0 alorsrg(M,)=rg|1 0 0 |=rg| 0 1 0] =3
0 2 O 0 0 2

Donc si A = 0 le systeme S) est un systeme de Cramer.

2—-X 1 =2

(
¢ Second cas : Si A # 0, rg(M),) = rg 1 0 (Lo)
P 0 0/ (

Conclusion : ‘SA n’est pas de Cramer pour : Ay = —1, Ay =1 et \3 = 2‘

En A\; = —1, le systeme précédent équivaut a

v +y —2z = 0 z=
=
On voit alors que le sous-espace propre associé a —1 est la droite vectorielle engendrée par

v=(1,-1,1).
Conclusion : | E_; = Vect{(1,—1,1)} = Vect{u, }.

10 / [16]
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En Ay =1 le systeme précédent équivaut a :

r 4y -2z = 0 z2=2x
=
T -y = 0 T =1y

On voit alors que le sous-espace propre associé a 1 est la droite vectorielle engendrée par
(1,1,1).

Conclusion : | E; = Vect{(1,1,1)} = Vect{us}.

En A\ = 2 le systeme précédent équivaut a

On voit alors que le sous-espace propre associé a 2 est la droite vectorielle engendrée par
(4,2,1).
Conclusion : | Es = Vect{(4,2,1)} = Vect{us}.

f) Montrons que By = (ug,uy,us) est une base de R? :
Commencons par noter que Card(us, u;,u3) = 3 = dimR? donc nous nous contenterons de
montrer que cette famille est libre pour montrer que c’est une base de R3.

Soit ()\1, )\2, )\3) € RS/)\1U2 + )\gul + /\3U3 =0 (*)

)\1+)\2+4/\3 =0 /\1+/\2—|—4)\3 =0 (Ll)
(*) S AN —AF+2)3 =0 <2\ +6)3 =0 (Lg — Ly + Ll)
AL+ Ao+ A3 =0 33 =0 (L3<—L1_L3)

Conclusion : ‘/\11@ + X+ A3u3 = 0= A =0 = Ay = A\3; famille libre‘

La famille (ug, uy, uz) étant formée de trois vecteurs, on en déduit qu’il s’agit d’une base de R?|.

Conclusion : | By = (uy,uy, uz) est une base de R3

1 1 4
g) Onpose P=[1 —1 2| matrice de la famille de vecteurs (us, uy, us).
1 1 1

D’apres la question précédente il est immédiat que rg(P) = rg{ug, uy, us} = 3 = ordre(P).

Conclusion : | P est inversible|
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Inversons P : Quels que soient les réels x,y, z,a,b,c on a :

;

x a r +y +4z = a
Plyl=|0] <« —y 42z = b
z ¢ lz +y +z = ¢
(2 +y +4z = «a
= < 2x +6z = a-+b L2<—L2+L1
L 3z = a—c Ly <+ Ly — Ls
( y = %a —%b +%c
& Jr = —ga +3b e
\ = %a _%C
N (e S
Onen déduit [y | =P 1[0 ]| ot P! % -1 1
? ¢ 5 0 -3
1 -3 3 6
pt= sl =32
2 0 =2
1 0 0
h) Par le calcul, il est immédiat que P'AP=D= |0 —1 0
0 0 2

® Soit y une solution de (g}) sur R.

a) On a
Y'= AY = PDP'Y.

On obtient alors directement le résultat en multipliant cette égalité par P~! & gauche. Soit :

P YY'=DpP Y

b) On pose Z = P7'Y.
Connaissant P!, il suffit de faire le produit matriciel pour en déduire I'expression de 21, 2
et z3 en fonction de vy, v et y".

A savoir :
2 = _ly// + ly/ +y
2 2
_ 1 1! 1 /+ 1
RZ2 = 6?/ 2?/ Sy
B T 1
3 = 3?/ 3?/

y étant une solution de (£5), on en déduit qu’elle est de classe C* sur R.

Des lors, ' est de classe C? et y” est de classe C! sur R, autrement dit y, 7 et 3" sont trois
fonctions de classe C! sur R. II vient alors que z, s et z3 sont de classe C' sur R en tant
que combinaisons linéaires de fonctions de classe C* sur R.
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¢) En dérivant les relations précédentes, on obtient :

1 1
A ) o
21 Y + Y +y
/ o 1y( ) 1y// + ly/
2% 27 "3
1 1
L= )y
%= 3Y 3Y
y(3) ()
Ou encore, puisque par hypothese, Y = | v"(z) |, '
y'(x)

La question 3.a) permet de conclure : |2’ = P~1Y’ = DP~'Y = DZ|.

1 0 0 21 () 21 () 21 ()
d) Z/=DZ<Z'=[0 -1 0 z(z) | & | Z4x) | = | —2(x)
0 0 2/ \z(2) 24 () 223(x)

Reprenant en particulier 'expression de z1, on en déduit : | 2] = z1 | La résolution des équa-

tions différentielles du premier ordre permet d’en déduire qu’il existe un réel A tel que
z1(x) = Ae®, pour tout réel z.

@ Détermination de 'ensemble S% des solutions de () sur R :

a) D’apres la question 3.b) on vient de prouver que y vérifie '’équation différentielle
z1(x) = Ne® = —%y” + %y’ + y ou encore (xx) — " + ¢ + 2y = 2)\e”.
L’équation caractéristique associée a (%) est —r2+r+2 = 0, qui admet pour racines —1 et 2

(apres éventuel calcul du discriminant). On en déduit que la solution générale de I’équation
homogene associée a (xx) est

x> Ae™" + Be* (A, B) € R?

Quant a déterminer une solution particuliere, on peut toujours dire que y, : * — Ae” est
solution évidente... sinon on posera y,(z) = Q(z)e” ou ) € R[X]. Des lors :

Yp(@) = (Q'(2) + Q(z))e” et y,(x) = (Q"(x) +2Q'(x) + Q(x))e”
Soit
—Yp (@) + Y () + 2yp(2) = (—Q" () — 2Q'(z) — Q(z) + Q'(z) + Q(z) +2Q(x)) " =
(-Q"(z) — Q'(z) +2Q(x)) " = 2Ae”
et puisque e* # 0 pour tout z réel, on a :
—Q"(x) — Q' (x) +2Q(z) = 2\ et donc |Q(x) = A
Au final, on voit que y est de la forme y(z) = Ae™® + Be?® + \e®.

Conclusion : |Siy € S}, (A, B, \) € R3 tels que y(z) = Ae ™ + Be*™ + \e®.

ou encore

Conclusion : | Sy C Vect{x — e x> e** 1 — e}
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b) Pour établir la réciproque, il reste a vérifier si toute fonction de la forme y(z) = Ae™ +
Be*™ + \e® est bien une solution de (g}), ce qui se fait trivialement, :

yO(z) —2y"(x) — ¢/ () + 2y(z) = (—Ae ™ +8Be™ + \e")
—2 (Ae™® + 4Be* + \e”)
— (—Ae™ + 2Be* + \e")
+2 (Ae™ + Be** + Ae”)

D’ou le résultat.

Sy = Vect(z — e ¥ 1+ ¥ 2+ ")

® On déduit du résultat ci-dessus que S} est le sous-espace vectoriel de C*(R,R) engendré par
T e ¥z e 1 e A savoir par une famille finie de vecteurs de C*°(R,R) qui est un
R-espace vectoriel.
Pour démontrer que celui-ci est de dimension 3, il suffit de mettre en évidence une base et, la
famille ci-dessus étant génératrice, il suffit de prouver qu’elle est libre et pour cela revenons a
la définition :

Soit ()\1, )\2, )\3) € R‘?‘/)\le*x + )\262:0 + Aze* = 0, VreR (* * *)
Cette égalité est en particulier vrai par passage a la limite en —oo. D’out

)\1 = 0
Donc (* * *) = Age?® 4+ \ze® = 0, Vz € R.

Ao+ A 0 = A2+ A =0
(***):>{2+3 (@ 0><:){2+3

S A=N=0
Moe? + Nze =0 (z=1) Xe+ A3 =0 2 ’

Conclusion : |(x — e, x — e**, x> e%) est une base de S |.
) ) 3

ou encore :

Conclusion : | S} est un R-espace vectoriel de dimension 3.

& Remarque (Pour une lecture en fin d’année) : Pour montrer que la famille {z — e = —

e?® x> e} est libre, on peut aussi utiliser le cours « Réduction d’endomorphismes » en remar-

quant que x — e %, x — €2¥, x — e® sont des vecteurs propres associées & des valeurs propres
deux a deux distinctes (en l'occurrence —1,2 et 1) de 'application linéaire ¥ : f +— f’. Ce qui
termine la démonstration...

® Siy(0) =1,y (0) =0=1y"(0), déterminons la solution analytique de (£%) :

D’apres la question précédente, on sait que si y est solution de (g}), alors
J(a,b,c) € R3/y(x) = ae™ + be” + ce**
d’ott l'on tire : y/(x) = —ae™ + be” + 2ce™ et y"(x) = a® + be® + 4ce?®.
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A T’aide des conditions initiales fournies, on obtient le systeme ci-dessous qu’il s’agit de ré-
soudre :

y(0)=a+b+c =1 atb+c =1 [, c =-1/3
Y(0)=—a+b+2¢c =0&20+3¢c =1 Lo+L; &b =1
y'(0)=a+b+4c =0 3¢ =—1 Ls—1L a =1/3

Conclusion : 1] existe une unique solution de (&%) vérifiant y(0) = 1, ¥/(0) = 0 = y”(0), a savoir :

1 1
y(z) = ge_z + et — gezz

Une approzimation numérique de la solution par la méthode d’FEuler :

Nous utilisons pour ¢a les notations suivantes : 3/ () = v(t) et y”(t) = a(t) pour tout ¢t > 0 afin
d’écrire, puisque y vérifie (£}) :

a'(t) =y"(t) = 2a(t) +v(t) - 2y(t)
(t) = a(t)
y'(t) = v(t)

On rappelle alors que pour h suffisamment petit :

a(t+h) =a(t)+h-d(t)=a(t)+h(2a(t)+v(t) — 2y(t)) = (1 + 2h)a(t) + hv(t) — 2hy(t)
v(t+h) =u(t)+h-V(t)=v(t)+ ha(t)
ylt+h) =y(t)+h-y(t) = yt) + ho(t)

Prenons pour exemple y(0) = 1, ¢/(0) = 0 = y”(0). On construit ensuite une valeur approchée
de la solution en prenant yy = 1, vg = 0 et ag = 0 puis en construisant pas a pas les valeurs
successives de y, v et a qu’on notera y,, v, et a, pour tout n € N en posant :

any1 = (14 2h)a, + hv, — 2hy,
Upy1 = Up+ han
Ynt1 =UYn+ hvn

Soit :

def simulSolutionEe(y0,v0,a0,h,t0,tf):
nbe_pas = int((tf-t0)/h)

y = [0]*(nbe_pas+1)
v = [0]*(nbe_pas+1)
a = [0]*(nbe_pas+1)

y[0],v[0],a[0] = yO0,v0,a0
for pas in range(nbe_pas):

alpas+1] = (1+2*h)*a[pas]+h*v[pas]-2xh*y[pas]
v[pas+1] = v[pas]+h*a[pas]
y[pas+1] = yl[pas]+h*v[pas]

return y,v,a
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