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Devoir surveillé 5 : Algèbre linéaire

Problème 1 :

1 Résultats préliminaires

1. a) On calcule les inverses par l’une des méthodes vues en cours. Par exemple, pour l’inversi-

bilité de D3 on pourra écrire : Soit X =

x
y
z

 et Y =

a
b
c

.

D3X = Y ⇔


y = a

z = b

x = c

⇔


x = c

y = a

z = b

⇔ X =

0 0 1
1 0 0
0 1 0

Y

Conclusion : D3 est inversible et D−1
3 =

0 0 1
1 0 0
0 1 0



De même, D4 est inversible et D−1
4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

b) Plusieurs réponses sont possibles :

i. On raisonne comme dans la question précédente et on passe par la résolution de (S)
DpX = Y , soit :

0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0
. . . . . . . . . 1

1 0 · · · · · · 0




x1

x2
...

xp−1

xp

 =


a1
a2
...

ap−1

ap

⇔


x2 = a1

x3 = a2
...

xp = ap−1

x1 = ap

⇔



x1 = ap

x2 = a1
...

xp−1 = ap−2

xp = ap−1

par simple permutation circulaire des lignes, à savoir : L1 ← Lp ← Lp−1 ← · · · ← L2 ←
L1 · · ·
Soit Dp inversible et D−1

p = tP

ii. On utilise l’indication de l’énoncé et d’après la question précédente, on conjecture que
Dp est inversible et que son inverse est sa transposée, que l’on notera DT

p . On prouve
la conjecture en calculant le produit DpD

T
p : soit A = DpD

T
p , et ai,j le coefficient de A

sur la ligne i et la colonne j.

— Rédaction 1 : On utilise la définition du produit, à savoir, si on note di,j les coeffi-
cients de Dp et dTi,j les coefficients DT

p :

ai,j =

p∑
k=1

di,kd
T
k,j =

p∑
k=1

di,kdj,k

1 / 16



BCP
∫
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or, si i ∈ J1, p− 1K, on a : di,k =

{
1 si k = i+ 1

0 sinon

Dès lors ai,j =

{
1 si k = i+ 1 = j + 1⇔ i = j

0 sinon

et ap,j =

p∑
k=1

dp,kdj,k = 1 si j = p car dp,k = 1⇔ k = 1...

— Rédaction 2 : « à la main » Ce coefficient ai,j est obtenu en faisant le produit (ma-
triciel) de la ligne i de Dp par la colonne j de DT

p , dont les coefficients sont ceux de
la ligne j de Dp. Or chaque ligne de Dp ne comporte qu’un seul 1, qui se trouve en
position i+ 1 pour la ligne i (position 1 pour la ligne p) ; le 1 de la ligne i est donc
dans la même position que celui de la ligne j si et seulement i = j, donc ai,j = 1 si
i = j et 0 sinon.

Conclusion : Tout ça prouve que A = In, ce qui montre que Dp est inversible d’inverse DT
p .

2. On reconnâıt la somme des termes d’une suite géométrique de raison différente de 1, puisque

zk = e
2ikπ
p =

(
e

2iπ
p

)k

. On en déduit :

1

p

p−1∑
k=0

zk =
1

p

1−
(
e

2iπ
p

)p

1− e
2iπ
p

= 0.

Géométriquement, 1
p

p−1∑
k=0

zk est l’affixe du barycentre des points A0, . . . , Ap−1, et on a trouvé

que ce barycentre est le centre O du cercle sur lequel sont placés ces points.

3. Soit z un complexe non nul ; on peut l’écrire z = reiθ où r est un réel strictement positif et θ
un réel quelconque. On a alors :

zp = 1 ⇐⇒ rpepiθ = 1 ⇐⇒
{

rp = 1
∃k ∈ Z, pθ = 2kπ

⇐⇒
{

r = 1
∃k ∈ Z, θ = 2kπ/p

2 Étude d’un modèle de diffusion sur le cercle

5. Il s’agit de relier la loi de Un+1 à celle de Un. On va utiliser le système complet d’événements
{(Un = k)}k∈J0,p−1K et la formule des probabilités totales :

P(Un+1 = i) =

p−1∑
j=0

P(Un=j)(Un+1 = i)× P(Un = j)

Commençons en distinguant les cas i = 0 et i = p− 1 :

— Pour i = 0 :

P(Un=p−1)(Un+1 = 0) =
1

2
= P(Un=1)(Un+1 = 0) et P(Un=j)(Un+1 = 0) = 0, ∀2 ≤ j ≤ p − 2.

Soit

P(Un+1 = 0) =
1

2
(P(Un = 1) + P(Un = p− 1))
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— Pour i = p− 1 :

P(Un=p−2)(Un+1 = p − 1) =
1

2
= P(Un=0)(Un+1 = p − 1) et P(Un=j)(Un+1 = 0) = 0, ∀j ∈

J1, p− 1K \ {p− 2}. Soit

P(Un+1 = p− 1) =
1

2
(P(Un = 0) + P(Un = p− 2))

— Pour 1 ≤ i ≤ p− 2 :
Lorsque la particule se trouve en Aj, elle ne peut se déplacer que vers Aj+1 ou Aj−1 et ceci
avec probabilité 1/2. On a donc :

P(Un+1 = i) =
1

2
× P(Un = i− 1) +

1

2
× P(Un = i+ 1)

Ceci montre qu’on a bien une formule du type Xn+1 = MXn, où M est la matrice carrée
dont les coefficients sont les P(Un=j)(Un+1 = i). Autrement dit la matrice qui a des 1/2 sur
la surdiagonale, la sousdiagonale, et les coins en haut à droite et en bas à gauche, et des 0
partout ailleurs. Ou encore :

Mp =
1

2


0 1 0 · · · 0 1
1 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 1
1 0 0 · · · 1 0

 =
1

2
(Dp +DT

p ).

6. On a Xn = Mn
p X0, où X0 =


1
0
...
0

.

7. La formule demandée découle de celle obtenue à la question 5) et de la propriété D−1
p = DT

p

de la question 1)b).

8. a) On cherche donc les valeurs de λ ∈ C telles que rg(M3 − λI3) < 3 ; on calcule ce rang
par pivot, et on trouve après calculs (je ne les ai pas rédigés mais ils doivent figurer sur la
copie) :

rg(M3 − λI3) = rg

 1 1 −2λ
0 −2λ− 1 1 + 2λ
0 0 (1 + 2λ)(2− 2λ)

 =


1 si λ = −1/2
2 si λ = 1
3 sinon

.

b) On détermine ensuite les noyaux demandés, à partir de la dernière matrice du calcul ci-
dessus :

E−1/2 = Ker

 1 1 1
0 0 0
0 0 0

 = Vect{(−1, 1, 0), (−1, 0, 1)}.

Conclusion : E−1/2 = Vect{u1, u2} où u1 = (−1, 1, 0) et u2 = (−1, 0, 1)

E1 = Ker

 1 1 −2
0 −3 3
0 0 0

 = V ect((1, 1, 1)).

Conclusion : E1 = Vect{u3} où u3 = (1, 1, 1)

Par ailleurs, on vérifie comme nous le demande l’énoncé, que :
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X ∈ Eλ(M3)⇔ (M3 − λI3)X = 0⇔ (f3 − λid3)(u) = 0⇔ f3(u)− λu = 0⇔ f3(u) = λu

Conclusion : f3(u1) = −
1

2
u1, f3(u2) = −

1

2
u2 et f3(u3) = u3

c) Montrons que M3 et D =

 −1/2 0 0
0 −1/2 0
0 0 1

 sont semblables : Cela découle immédia-

tement de la question précédente, à condition de montrer que B′ = (u1, u2, u3) est une base
de R3. En effet, si c’est le cas, alors par construction,MB′(f3) = D.

Montrons donc que (u1, u2, u3) est une base de R3 : C’est une famille de cardinal égale à
3 qui est la dimension de R3. Il suffit de montrer que c’est une famille libre pour montrer
que c’est une base de R3. On fait le choix ici de calculer le rang de cette famille de vecteurs
en passant par le rang de la matrice des coordonnées de cette famille de vecteur qui n’est
autre que la matrice de passage qui est demandée en fin de question.

rg{u1, u2, u3} = rg

 −1 −1 1
1 0 1
0 1 1

 = rg

−1 −1 1

0 −1 2
0 1 1

 = rg

−1 −1 1
0 −1 2
0 0 3

 = 3

On peut donc conclure que B′ = (u1, u2, u3) est une base de R3.

Conclusion : M3 = PDP−1 avec P =

 −1 −1 1
1 0 1
0 1 1

 et D =

 −1/2 0 0
0 −1/2 0
0 0 1



d) Après calcul, on trouve P−1 =
1

3

 −1 2 −1
−1 −1 2
1 1 1

 [✐ A faire. C’est très rapide]

e) D’après la question 6), Xn est la première colonne de Mn
3 . On a, par une récurrence à

écrire dans la copie, pour tout n ∈ N :

Mn
3 = PDnP−1

=
1

3

 −(−1/2)n −(−1/2)n 1
(−1/2)n 0 1

0 (−1/2)n 1

 −1 2 −1
−1 −1 2
1 1 1


=

1

3

 2(−1/2)n + 1 −(−1/2)n + 1 −(−1/2)n + 1
−(−1/2)n + 1 2(−1/2)n + 1 −(−1/2)n + 1
−(−1/2)n + 1 −(−1/2)n + 1 2(−1/2)n + 1

 .

La limite de P (Un = k) quand n tend vers +∞ est donc 1/3, quel que soit k ∈ J0, 2K. Les
trois positions tendent à devenir équiprobables lorsque le nombre de déplacements tend
vers l’infini.
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9. Soit X =

 x1
...
xp

 un vecteur et λ un complexe. On a :

DpX = λX ⇐⇒



x2 = λx1

x3 = λx2
...
xp = λxp−1

x1 = λxp

⇐⇒



x2 = λx1

x3 = λ2x1
...
xp = λp−1x1

x1 = λpx1

⇐⇒ X = 0 ou

λp = 1 et X =


1
λ
λ2

...
λp−1

x1


Conclusion : Les valeurs de λ pour lesquelles il existe X ̸= 0 avec DpX = λX sont donc les
complexes λ tels que λp = 1.

En prenant x1 = 1, on obtient qu’il existe p valeurs λ complexes, à savoir les zk = e
2ikπ
p pour

k ∈ J0, p− 1K, obtenus à la question I.4. pour lesquelles DpXk = zkXk avec Xk =


1
zk
z2k
...

zp−1
k

.

10. Soit Q =


1 1 1 · · · 1
1 z1 z2 · · · zp−1
...

...
... · · · ...

1 zp−1
1 zp−1

2 · · · zp−1
p−1

. On cherche à montrer que Q est inversible :

✐ La question qu’il faut se poser c’est, quel est l’intérêt de montrer cette inversibilité. La
réponse est immédiate si on note que la matrice Q est la matrice des coordonnées des vecteurs
Xk obtenus à la question précédente (puisque z0 = 1). Dès lors, montrer l’inversibilité de Q
c’est montrer que son rang vaut p et donc que la famille {X0 · · · , Xp−1} est libre...

Allons-y et, conformément à l’énoncé, on pose R = tQ et on considère le système homogène

(S) : RX = 0 où X =


a0
a1
...

ap−1

.

— Montrons que 1, z1, · · · zp−1 sont racines du polynôme P (X) = a0 + a1X + · · · ap−1X
p−1 :
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Le système (S) donne :

RX = 0⇔ tQX = 0⇔


1 1 · · · 1

1 z1 · · · zp−1
1

1 z2 · · · zp−1
2

1 zp−1 · · · zp−1
p−1




a0
a1
...

ap−1

 =


0
0
...
0



⇔



a0 + a1 + · · ·+ ap−1 = 0

a0 + z1a1 + · · ·+ zp−1
1 ap−1 = 0

a0 + z2a1 + · · ·+ zp−1
2 ap−1 = 0

...
...

a0 + zp−1a1 + · · ·+ zp−1
p−1ap−1 = 0

ou encre : 1, z1, · · · , zp−1 sont racines du polynôme P (X) = a0 + a1X + · · ·+ ap−1X
p−1.

— Concluons que la seule solution de (S) est la solution nulle : Il suffit de dire que le po-
lynôme P est un polynôme de degrés inférieur ou égale à p − 1. Or il possède p racines
distinctes (cf. 1.4.).

Conclusion : P est le polynôme nul ou encore a0 = 0 = a1 = · · · ap−1

— On en déduit que le système homogène (S) : RX = 0 admet une unique solution qui est
la solution nulle. C’est un système de Cramer. La matrice R = tQ associée au système est
donc inversible.
Et si on rappelle que rg(Q) = rg(tQ), alors rg(Q) = rg(tQ) = p = ordre(Q).

Conclusion : Q est inversible

11. Posons Xk = MB2(vk) ou B2 désigne la base canonique de Cp. Montrons que la famille
(v0, v1, · · · , vp−1) est une base de Cp : Cela découle immédiatement de la question précédente.
Le rang de la famille (v0, · · · , vp−1) est égale au rang de la matrice des coordonnées de cette
famille de vecteur, autrement dit la matrice Q.
Dès lors, rg(v0, · · · , vp−1) = rg(Q) = p. Ce qui prouve que cette famille est libre.
Par ailleurs Card(v0, · · · , vp−1) = p = dim(Cp).

Conclusion : B′′ = (v0, · · · , vp−1) est une base de Cp.

12. Soit Dp =MB2(gp) où gp est un endomorphisme de Cp et B2 est sa base canonique.
On sait grâce à la question 9. que DpXk = zkXk, soit gp(vk) = zkvk.
L’expression de la matrice de gp dans la base B′′ donne immédiatement :

MB′′(gp) = ∆ =


z0 0 · · · · · · 0
0 z1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 zp−1


Et d’après les formules de changement de base, puisque par construction Q = Pass(B2,B′′),

on a : Dp = Q∆pQ
−1
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13. Justifions l’inversibilité de Dp et exprimons D−1
p en fonction de Q et ∆p :

La matrice ∆p est inversible car elle est diagonale et n’a pas de 0 sur sa diagonale.
On en déduit, à l’aide de la formule (AB)−1 = B−1A−1 pour des matrices A et B inversibles,
que D−1

p = (Q−1)−1∆−1
p Q−1 = Q∆−1

p Q−1.

Par ailleurs, grâce à la question 7., Mp =
1

2
(Dp +D−1

p ) =
1

2

(
Q∆pQ

−1 +Q∆−1
p Q−1

)
, soit :

Mp =
1

2
Q(∆p +∆−1

p )Q−1 =
1

2
Q


z0 +

1
z0

0 . . . . . . 0

0 z1 +
1
z1

0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 zp−1 +
1

zp−1

Q−1.

On peut alors conclure que dans la base B′′ de Cp, la matrice de l’endomorphisme fp dont Mp

est la matrice, est diagonale.

14. Montrons que Mp est semblable à Tp =


1 0 0 · · · 0
0 cos(2π/p) 0 · · · 0
0 0 cos(4π/p) · · · 0
...

...
... · · · ...

0 0 0 · · · cos
(

2(p−1)π
p

)

 :

Il suffit pour ça de dire que :

1
2

(
zk +

1
zk

)
= 1

2

(
e

2ikπ
p + e−

2ikπ
p

)
= cos

(
2kπ
p

)
✐ Remarque que les valeurs sur la diagonales sont donc toutes réelles...

15. On suppose dans cette question que p est impair.

a) Soit k ∈ J1; p− 1K. Déterminons lim
n→+∞

cos
(

2kπ
p

)n

:

Cette limite vaut 0 car avec les hypothèses sur k, p étant impair, l’angle 2kπ
p

est dans

l’intervalle ]0, 2π[\{π}, et donc son cosinus est strictement compris entre −1 et 1.

b) En déduire lim
n→∞

T n
p . On commence par rappeler qu’on obtient la puissance n-ième d’une

matrice diagonale en élevant les termes de sa diagonale à la puissance n. Dès lors :

lim
n→∞

T n
p =


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0


c) Comme lim

n→∞
Xn = lim

n→∞
Mn

p X0 = lim
n→∞

QT n
p Q

−1X0 = Q · lim
n→∞

T n
p ·Q−1X0

on obtient :
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lim
n→∞

Xn = Q


1 0 . . . . . . 0
0 0 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 0

Q−1


1
0
...
0
0

 =


1 0 . . . . . . 0
1 0 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

1 . . . . . . 0 0

Q−1


1
0
...
0
0


La première colonne de la matrice obtenue par le produit de

1 0 . . . . . . 0
1 0 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

1 . . . . . . 0 0

 par Q−1

a tous ses coefficients égaux au coefficient en haut à gauche de Q−1. On ne connâıt pas ce
coefficient, mais on sait que la somme des coefficients de Xn vaut 1 (et la multiplication
par X0 retournera justement cette première colonne...), donc la somme de leurs limites
(qui est la limite de la somme) vaut 1 aussi. Donc ce coefficient vaut forcément 1/p.

d) Interprétons le résultat obtenu : Comme dans le cas particulier p = 3, les différentes
positions possibles pour la particules tendent vers l’équiprobabilité lorsque le nombre de
déplacements tend vers l’infini.
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Problème 2 : Epreuve Agro-véto A 2011

➀ Il suffit pour répondre à cette question de vérifier l’égalité. Or :

AY =

2 1 −2
1 0 0
0 1 0

 ·
y′′(x)
y′(x)
y(x)

 =

2y′′(x) + y′(x)− 2y(x)
y′′(x)
y′(x)

 =

y(3)(x)
y′′(x)
y′(x)

 = Y ′

puisque y est solution de (ε′3) .

Conclusion : Y ′ = AY

➁ Soit λ ∈ C et I la matrice identité de taille 3. On pose conformément à l’énoncé :

Mλ =

2 1 −2
1 0 0
0 1 0

−
1 0 0
0 1 0
0 0 1

 =

2− λ 1 −2
1 −λ 0
0 1 −λ


a) Soit f ∈ L(R3) tel que A =MB(f).

rg(f) = rg(A) = rg

−2 2 1
0 1 0
0 0 1

 en permutant les colonnes C1 ← C3 ← C2 ← C1

Donc rg(A) = ordre(A) ce qui permet d’assurer que A inversible.

Conclusion : rg(f) = 3, f est bijective, ker(f) = {0R3} et Im(f) = R3

b)

rg(f − idE) = rg(A− I3) = rg

 1 1 −2
1 −1 0
0 1 −1

 L2 ← L2 − L1

= rg

1 1 −2
0 −2 2
0 1 −1

 L3 ← 2L3 + L2

= rg

1 1 −2
0 −2 2
0 0 0

 = 2

D’où rg(A− I3) = rg(f − idE) = dim(Im(f − idE)) = 2 et donc

dim(ker(f − idE)) = 3− rg(f − idE) = 3− 2 = 1 d’après la formule du rang.

On note par ailleurs, conformément aux indications de l’énoncé, que :

(A− I3)

1
1
1

 =

0
0
0

⇔ (f − idE)(u) = 0

Donc u = (1, 1, 1) ∈ ker(f − id3) qui est une droite vectorielle.

Conclusion : ker(f − id3) = Vect{u} où u = (1, 1, 1)
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c) Pour tout λ ∈ R, montrons que l’ensemble des solutions de (Sλ) est un sous-espace vectoriel
de R3 qu’on notera Eλ. Pour cela, définissons plus clairement Eλ en posant :

Eλ = {(x1, x2, x3) ∈ R3/(x1, x2, x3) solution de (Sλ)} = {X ∈M3,1(R)/Mλ ·X = 0}.
Dès lors :
— Eλ ⊂ R3 par définition de Eλ.
— 0R3 est solution évidente de (Sλ) donc 0R3 ∈ Eλ.
— ∀X1, X2 ∈ Eλ, ∀α ∈ R, montrons que αX1 +X2 ∈ Eλ :

Il suffit de dire que :
Mλ · (αX1 +X2) = αMλ ·X1 +Mλ ·X2

Or Mλ ·X1 = 0 et Mλ ·X2 = 0 car X1 et X2 sont solutions de (Sλ)

donc Mλ · (αX1 +X2) = 0 ou encore αX1 +X2 ∈ Eλ

Conclusion : Eλ est un sous-espace vectoriel de R3

d) Le système homogène (Sλ) n’est pas un système de Cramer si et seulement si la matrice
assocéeMλ n’est pas inversible, ou encore, puisque c’est une matrice d’ordre 3 si et seulement

si rg(Mλ) < 3 .

Déterminons en fonction de λ le rang de Mλ (nous prendrons, une fois n’est pas coutume,
le pivot en haut à droite...) :

rg(Mλ) = rg

2− λ 1 -2
1 −λ 0
0 1 −λ

 = rg

 2− λ 1 −2
1 −λ 0

−λ(2− λ) 2− λ 0



♦ Premier cas : Si λ = 0 alors rg(Mλ) = rg

2 1 −2
1 0 0
0 2 0

 = rg

−2 2 1
0 1 0
0 0 2

 = 3

Donc si λ = 0 le système Sλ est un système de Cramer.

♦ Second cas : Si λ ̸= 0, rg(Mλ) = rg

2− λ 1 −2
1 −λ 0

P (λ) 0 0

 (L1)
(L2)
(L3 ← λL3 + (2− λ)L2)

avec P (λ) = −λ2(2− λ) + (2− λ) = (2− λ)(−λ2 + 1) = (λ− 2)(λ− 1)(λ+ 1)

Conclusion : Sλ n’est pas de Cramer pour : λ1 = −1, λ2 = 1 et λ3 = 2

e) En λ1 = −1, le système précédent équivaut à{
3x +y −2z = 0

x +y = 0
⇔

{
z = x

y = −x

On voit alors que le sous-espace propre associé à −1 est la droite vectorielle engendrée par
v = (1,−1, 1).
Conclusion : E−1 = Vect{(1,−1, 1)} = Vect{u1}.
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En λ2 = 1 le système précédent équivaut à :

{
x +y −2z = 0

x −y = 0
⇔

{
z = x

x = y

On voit alors que le sous-espace propre associé à 1 est la droite vectorielle engendrée par
(1, 1, 1).

Conclusion : E1 = Vect{(1, 1, 1)} = Vect{u2}.

En λ = 2 le système précédent équivaut à

{
y −2z = 0

x −2y = 0
⇔

{
z = 1

2
y

x = 2y

On voit alors que le sous-espace propre associé à 2 est la droite vectorielle engendrée par
(4, 2, 1).

Conclusion : E2 = Vect{(4, 2, 1)} = Vect{u3}.

f) Montrons que B1 = (u2, u1, u3) est une base de R3 :
Commençons par noter que Card(u2, u1, u3) = 3 = dimR3 donc nous nous contenterons de
montrer que cette famille est libre pour montrer que c’est une base de R3.

Soit (λ1, λ2, λ3) ∈ R3/λ1u2 + λ2u1 + λ3u3 = 0 (∗)

(∗)⇔


λ1 + λ2 + 4λ3 = 0

λ1 − λ2 + 2λ3 = 0

λ1 + λ2 + λ3 = 0

⇔


λ1 + λ2 + 4λ3 = 0

2λ1 + 6λ3 = 0

3λ3 = 0

(L1)
(L2 ← L2 + L1)
(L3 ← L1 − L3)

Conclusion : λ1u2 + λ2u1 + λ3u3 = 0⇒ λ1 = 0 = λ2 = λ3 ; famille libre

La famille (u2, u1, u3) étant formée de trois vecteurs, on en déduit qu’ il s’agit d’une base de R3 .

Conclusion : B1 = (u1, u2, u3) est une base de R3

g) On pose P =

1 1 4
1 −1 2
1 1 1

 matrice de la famille de vecteurs (u2, u1, u3).

D’après la question précédente il est immédiat que rg(P ) = rg{u2, u1, u3} = 3 = ordre(P ).

Conclusion : P est inversible
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Inversons P : Quels que soient les réels x, y, z, a, b, c on a :

P

x
y
z

 =

a
b
c

 ⇔


x +y +4z = a

x −y +2z = b

x +y +z = c

⇔


x +y +4z = a

2x +6z = a+ b L2 ← L2 + L1

3z = a− c L3 ← L1 − L3

⇔


y = 1

6
a −1

2
b +1

3
c

x = −1
2
a +1

2
b +c

z = 1
3
a −1

3
c

On en déduit

x
y
z

 = P−1

a
b
c

 où P−1

−1
2

1
2

1
1
6
−1

2
1
3

1
3

0 −1
3

 .

P−1 =
1

6

−3 3 6
1 −3 2
2 0 −2



h) Par le calcul, il est immédiat que P−1AP = D =

1 0 0
0 −1 0
0 0 2


➂ Soit y une solution de (ε′3) sur R.

a) On a
Y ′ = AY = PDP−1Y.

On obtient alors directement le résultat en multipliant cette égalité par P−1 à gauche. Soit :

P−1Y ′ = DP−1Y

b) On pose Z = P−1Y .
Connaissant P−1, il suffit de faire le produit matriciel pour en déduire l’expression de z1, z2
et z3 en fonction de y, y′ et y′′.
A savoir :

z1 = −
1

2
y′′ +

1

2
y′ + y

z2 =
1

6
y′′ −

1

2
y′ +

1

3
y

z3 =
1

3
y′′ −

1

3
y

y étant une solution de (ε′3) , on en déduit qu’elle est de classe C3 sur R.
Dès lors, y′ est de classe C2 et y′′ est de classe C1 sur R, autrement dit y, y′ et y′′ sont trois
fonctions de classe C1 sur R. Il vient alors que z1, z2 et z3 sont de classe C1 sur R en tant
que combinaisons linéaires de fonctions de classe C1 sur R.
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c) En dérivant les relations précédentes, on obtient :

z′1 = −
1

2
y(3) +

1

2
y′′ + y′

z′2 =
1

6
y(3) −

1

2
y′′ +

1

3
y′

z′3 =
1

3
y(3) −

1

3
y′

Ou encore, puisque par hypothèse, Y ′ =

y(3)(x)
y′′(x)
y′(x)

, Z ′ = P−1Y ′ .

La question 3.a) permet de conclure : Z ′ = P−1Y ′ = DP−1Y = DZ .

d) Z ′ = DZ ⇔ Z ′ =

1 0 0
0 −1 0
0 0 2

z1(x)
z2(x)
z3(x)

⇔
z′1(x)
z′2(x)
z′3(x)

 =

 z1(x)
−z2(x)
2z3(x)

.

Reprenant en particulier l’expression de z1, on en déduit : z′1 = z1 La résolution des équa-

tions différentielles du premier ordre permet d’en déduire qu’il existe un réel λ tel que
z1(x) = λex, pour tout réel x.

➃ Détermination de l’ensemble S ′
3 des solutions de (ε′3) sur R :

a) D’après la question 3.b) on vient de prouver que y vérifie l’équation différentielle

z1(x) = λex = −1
2
y′′ + 1

2
y′ + y ou encore (∗∗)− y′′ + y′ + 2y = 2λex.

L’équation caractéristique associée à (∗∗) est −r2+r+2 = 0, qui admet pour racines −1 et 2
(après éventuel calcul du discriminant). On en déduit que la solution générale de l’équation
homogène associée à (∗∗) est

x 7→ Ae−x +Be2x, (A,B) ∈ R2

Quant à déterminer une solution particulière, on peut toujours dire que yp : x 7−→ λex est
solution évidente... sinon on posera yp(x) = Q(x)ex où Q ∈ R[X]. Dès lors :

y′p(x) = (Q′(x) +Q(x))ex et y′′p(x) = (Q′′(x) + 2Q′(x) +Q(x))ex

Soit

−y′′p(x) + y′p(x) + 2yp(x) = (−Q′′(x)− 2Q′(x)−Q(x) +Q′(x) +Q(x) + 2Q(x)) ex =
(−Q′′(x)−Q′(x) + 2Q(x)) ex = 2λex

et puisque ex ̸= 0 pour tout x réel, on a :

−Q′′(x)−Q′(x) + 2Q(x) = 2λ et donc Q(x) = λ

Au final, on voit que y est de la forme y(x) = Ae−x +Be2x + λex.

Conclusion : Si y ∈ S ′
3, ∃(A,B, λ) ∈ R3 tels que y(x) = Ae−x +Be2x + λex.

ou encore

Conclusion : S ′
3 ⊂ V ect{x 7→ e−x, x 7→ e2x, x 7→ ex}
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b) Pour établir la réciproque, il reste à vérifier si toute fonction de la forme y(x) = Ae−x +
Be2x + λex est bien une solution de (ε′3) , ce qui se fait trivialement :

y(3)(x)− 2y′′(x)− y′(x) + 2y(x) =
(
−Ae−x + 8Be2x + λex

)
−2

(
Ae−x + 4Be2x + λex

)
−
(
−Ae−x + 2Be2x + λex

)
+2

(
Ae−x +Be2x + λex

)
= 0.

D’où le résultat.

S ′
3 = V ect(x 7→ e−x, x 7→ e2x, x 7→ ex)

➄ On déduit du résultat ci-dessus que S ′
3 est le sous-espace vectoriel de C∞(R,R) engendré par

x 7→ e−x, x 7→ e2x, x 7→ ex, à savoir par une famille finie de vecteurs de C∞(R,R) qui est un
R-espace vectoriel.
Pour démontrer que celui-ci est de dimension 3, il suffit de mettre en évidence une base et, la
famille ci-dessus étant génératrice, il suffit de prouver qu’elle est libre et pour cela revenons à
la définition :

Soit (λ1, λ2, λ3) ∈ R3/λ1e
−x + λ2e

2x + λ3e
x = 0, ∀x ∈ R (∗ ∗ ∗).

Cette égalité est en particulier vrai par passage à la limite en −∞. D’où

λ1 = 0

Donc (∗ ∗ ∗)⇒ λ2e
2x + λ3e

x = 0, ∀x ∈ R.

(∗ ∗ ∗)⇒

{
λ2 + λ3 = 0

λ2e
2 + λ3e = 0

(x = 0)
(x = 1)

⇔

{
λ2 + λ3 = 0

λ2e+ λ3 = 0
⇔ λ2 = λ3 = 0

Conclusion : (x 7→ e−x, x 7→ e2x, x 7→ ex) est une base de S ′
3 .

ou encore :

Conclusion : S ′
3 est un R-espace vectoriel de dimension 3.

✐ Remarque (Pour une lecture en fin d’année) : Pour montrer que la famille {x 7→ e−x, x 7→
e2x, x 7→ ex} est libre, on peut aussi utiliser le cours « Réduction d’endomorphismes » en remar-
quant que x 7→ e−x, x 7→ e2x, x 7→ ex sont des vecteurs propres associées à des valeurs propres
deux à deux distinctes (en l’occurrence −1, 2 et 1) de l’application linéaire Ψ : f 7→ f ′. Ce qui
termine la démonstration...

➅ Si y(0) = 1, y′(0) = 0 = y′′(0), déterminons la solution analytique de (ε′3) :

D’après la question précédente, on sait que si y est solution de (ε′3), alors

∃(a, b, c) ∈ R3/y(x) = ae−x + bex + ce2x

d’où l’on tire : y′(x) = −ae−x + bex + 2ce2x et y′′(x) = ax + bex + 4ce2x.
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t2 - Devoir surveillé n° 5 - samedi 10 janvier 2026

A l’aide des conditions initiales fournies, on obtient le système ci-dessous qu’il s’agit de ré-
soudre :

y(0) = a+ b+ c = 1

y′(0) = −a+ b+ 2c = 0

y′′(0) = a+ b+ 4c = 0

⇔


a+ b+ c = 1

2b+ 3c = 1

3c = −1

L1

L2 + L1

L3 − L1

⇔


c = −1/3
b = 1

a = 1/3

Conclusion : Il existe une unique solution de (ε′3) vérifiant y(0) = 1, y′(0) = 0 = y′′(0), à savoir :

y(x) =
1

3
e−x + ex −

1

3
e2x

➆ Une approximation numérique de la solution par la méthode d’Euler :

Nous utilisons pour ça les notations suivantes : y′(t) = v(t) et y′′(t) = a(t) pour tout t ≥ 0 afin
d’écrire, puisque y vérifie (ε′3) :

a′(t) = y′′′(t) = 2a(t) + v(t)− 2y(t)

v′(t) = a(t)

y′(t) = v(t)

On rappelle alors que pour h suffisamment petit :
a(t+ h) ≈ a(t) + h · a′(t) = a(t) + h(2a(t) + v(t)− 2y(t)) = (1 + 2h)a(t) + hv(t)− 2hy(t)

v(t+ h) ≈ v(t) + h · v′(t) = v(t) + ha(t)

y(t+ h) ≈ y(t) + h · y′(t) = y(t) + hv(t)

Prenons pour exemple y(0) = 1, y′(0) = 0 = y′′(0). On construit ensuite une valeur approchée
de la solution en prenant y0 = 1, v0 = 0 et a0 = 0 puis en construisant pas à pas les valeurs
successives de y, v et a qu’on notera yn, vn et an pour tout n ∈ N en posant :

an+1 = (1 + 2h)an + hvn − 2hyn

vn+1 = vn + han

yn+1 = yn + hvn

Soit :

def simulSolutionEe(y0,v0,a0,h,t0,tf):

nbe_pas = int((tf-t0)/h)

y = [0]*(nbe_pas+1)

v = [0]*(nbe_pas+1)

a = [0]*(nbe_pas+1)

y[0],v[0],a[0] = y0,v0,a0

for pas in range(nbe_pas):

a[pas+1] = (1+2*h)*a[pas]+h*v[pas]-2*h*y[pas]

v[pas+1] = v[pas]+h*a[pas]

y[pas+1] = y[pas]+h*v[pas]

return y,v,a
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