
BCP
∫
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Devoir surveillé 5 : Algèbre linéaire

Exercice :

Soient les vecteurs de R3 : u1 = (0, 3,−2), u2 = (1, 1,−1) et u3 = (3,−3, 1)
Soient de plus :

E = Vect{u1, u2, u3} et D = {u ∈ R3/∃a ∈ R, u = (a, a, a)}

➀ Montrons que E et D sont deux sous-espaces vectoriels de R3 :

a) E est un sous espace vectoriel de R3 car engendré par une famille finie de vecteurs de R3.

b) Pour D on peut utiliser le même argument en écrivant que :

D = Vect{(1, 1, 1)}

Sinon, on passe par la caractérisation :

— D ⊂ R3

— (0, 0, 0) ∈ D (il suffit de prendre a = 0).
— Soit u, v ∈ D, soit λ ∈ R, alors :

∃a ∈ R/u = (a, a, a) et ∃b ∈ R/v = (b, b, b)
et λu+ v = (λa+ b, λa+ b, λa+ b) ∈ D. Conclusion : D sous-espace vectoriel de R3

➁ La famille {u1, u2, u3} est-elle libre ? On passe par exemple par la définition :

Soit (λ1, λ2, λ3) ∈ R3/λ1u1 + λ2u2 + λ3u3 = 0 (*)

(∗)⇔


λ2 + 3λ3 = 0

3λ1 + λ2 − 3λ3 = 0

−2λ1 − λ2 + λ3 = 0

⇔


λ2 = −3λ3

3λ1 − 6λ3 = 0

−2λ1 + 4λ3 = 0

⇔

{
λ1 = 2λ3

λ2 = −3λ3

,∀λ3 ∈ R

On en déduit que : (∗)⇔ 2λ3u1 − 3λ3u2 + λ3u3 = 0, ∀λ3 ∈ R.
Ou encore :

2u1 − 3u2 + u3 = 0

Conclusion : La famille {u1, u2, u3} est liée

➂ Déterminons une base et une équation cartésienne de E : Puisque u1 et u2 sont non colinéaires,
on peut en déduire que {u1, u2} est libre, ou encore :

rg{u1, u2, u3} = 2 = dim(Vect{u1, u2, u3}) = dim(E)

E est donc un plan vectoriel dont B = (u1, u2) est une base. Il est demandé d’en donner
l’équation cartésienne : Une méthode possible consiste à dire que :

v = (x, y, z) ∈ E ⇔ rg(u1, u2, v) = 2
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Or,

rg(u1, u2, v) = rg

 0 1 x
3 1 y
−2 −1 z

 = rg

 3 1 y
0 1 x
−2 −1 z

 L1 ← L2

L2 ← L1

L3

= rg

3 1 y
0 1 x
0 −1 3z + 2y

 L1

L2

L3 ← 3L3 + 2L1

= rg

3 1 y
0 1 x
0 0 x+ 2y + 3z


Dès lors, v = (x, y, z) ∈ E ⇔ x+ 2y + 3z = 0.

Conclusion : E = {(x, y, z) ∈ R3/x+ 2y + 3z = 0}

➃ Déterminons l’intersection de E et de D :

(x, y, z) ∈ E ∩D ⇔

{
x+ 2y + 3z = 0

x = y = z
⇔

{
6z = 0

x = y = z
⇔ x = y = z = 0

Conclusion : E ∩D = {0}

✐Remarque : On pouvait aussi noter que (1, 1, 1) /∈ E et donc l’intersection du plan vectoriel E et
de la droite D est réduite au seul vecteur nul...

Problème 1 :

L’objectif de ce problème est de calculer de deux manières différentes la puissance n-ième d’une ma-
trice.

On considère les matrices J =

1 1 1
1 1 1
1 1 1

 et M =
1

4

2 1 1
1 2 1
1 1 2

.

➀ Première méthode :

a) Exprimons Jn en fonction de J pour tout entier naturel n :
Un calcul rapide montre que J2 = 3J .
On va montrer par récurrence que Jn = 3n−1J ∀n ∈ N∗.

— J1 = J = 30J suffit à initialiser cette récurrence pour n = 1.
— On suppose que Jn = 3n−1J pour un entier n ≥ 1.
— Alors Jn+1 = JnJ = 3n−1J2 = 3n−13J = 3nJ . Ce qui prouve l’hérédité de la relation.

Conclusion : Jn = 3n−1J , ∀n ≥ 1 et J0 = I

b) Déterminons deux réels a et b tels que M = aI + bJ :

M = aI + bJ ⇔
1

4

2 1 1
1 2 1
1 1 2

 =

a 0 0
0 a 0
0 0 a

+

b b b
b b b
b b b

 =

a+ b b b
b a+ b b
b b a+ b


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Or deux matrices sont égales si et seulement si leurs coefficients sont égaux.

On obtient donc le système :

{
a+ b = 1/2

b = 1/4
⇔ a = b =

1

4
.

Conclusion : M =
1

4
I +

1

4
J ; Rque : on pouvait aussi noter directement que 4M = I + J

c) Calculons Mn pour tout entier naturel n :
Si n = 0, Mn = M0 = I.
Sinon, la relation précédente nous invite à utiliser la formule du binôme de Newton, ce qui
est possible car I et J commutent.
Alors, ∀n > 0 :

Mn =

(
1

4
I +

1

4
J

)n

=
1

4n
(I + J)n =

1

4n

n∑
k=0

(
n
k

)
Jk

On utilise alors le résultat de la question 1. en prenant soin de distinguer le cas k = 0.
Dès lors :

Mn =
1

4n

[(
n
0

)
J0 +

n∑
k=1

(
n
k

)
Jk

]
=

1

4n

[
I +

n∑
k=1

(
n
k

)
3k−1J

]

=
1

4n

[
I +

1

3

(
n∑

k=1

(
n
k

)
3k

)
J

]
=

1

4n

[
I +

1

3

(
n∑

k=0

(
n
k

)
3k − 1

)
J

]

=
1

4n

(
I +

4n − 1

3
J

)
=

1

4n
I +

1

3

(
1−

1

4n

)
J

Conclusion : Mn = I si n = 0 et Mn =
1

3


1 +

2

4n
1−

1

4n
1−

1

4n

1−
1

4n
1 +

2

4n
1−

1

4n

1−
1

4n
1−

1

4n
1 +

2

4n

 si n ∈ N∗

➁ Deuxième méthode :

a) Après calculs... on obtient : M2 −
5

4
M +

1

4
I = 0

b) Montrons par récurrence que pour tout entier naturel n, il existe deux réels an et bn tels
que : Mn = anM + bnI :

— Initialisation : La propriété est vraie pour n = 0 car M0 = I = 0M + 1I. On a dans ce
cas a0 = 0 et b0 = 1.

— On suppose la propriété vraie au rang n. C’est-à-dire ∃(an, bn) ∈ R2/Mn = anM + bnI.
— Hérédité :

Mn+1 = Mn ×M = (anM + bnI)×M = anM
2 + bnM

= an

(
5

4
M −

1

4
I

)
+ bnM =

(
5

4
an + bn

)
M −

1

4
anI
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En posant an+1 =
5

4
an + bn et bn+1 = −

1

4
an on prouve l’existence de deux réels an+1 et

bn+1 tels que Mn+1 = an+1M + bn+1I. La propriété est vraie au rang n+ 1.

— Conclusion : La propriété est vraie pour tout entier naturel n

c) D’après ce qui précède, on a an+1 =
5

4
an + bn et bn+1 = −

1

4
an, ∀n ∈ N.

On sait déjà que a0 = 0 et b0 = 1.
Comme M1 = 1.M + 0.I on en déduit que a1 = 1 et b1 = 0.

d) Montrons que (an)n∈N est une suite récurrente linéaire d’ordre 2 : La question précédente

permet d’assurer que : an+2 =
5

4
an+1 + bn+1, ∀n ∈ N

D’où, sachant que pour tout entier naturel n : bn+1 = −
1

4
an, on a :

an+2 =
5

4
an+1 −

1

4
an, ∀n ∈ N

Conclusion : (an)n≥0 est une suite récurrente linéaire d’ordre 2 .

Son équation caractéristique et : r2 −
5

4
r +

1

4
dont les racines sont les mêmes que celles de

l’équation 4r2 − 5r + 1 = 0, c’est-à-dire r = 1 et r =
1

4
.

D’où an = λ1n + µ

(
1

4

)n

, ∀n ∈ N.

Les conditions à l’origine permettent d’obtenir le système

λ+ µ = 0

λ+
1

4
µ = 1

⇔


λ =

4

3

µ = −
4

3

.

Dès lors :

an =
4

3
−

4

3

(
1

4

)n

et bn = −
1

4
an−1 = −

1

3
+

1

3

(
1

4

)n−1

On en déduit que :

Mn =

[
4

3
−

4

3

(
1

4

)n]
×

1

4

2 1 1
1 2 1
1 1 2

+

−1

3
+

1

3

(
1

4

)n−1
× I

=

[
1

3
−

1

3

(
1

4

)n]
×

2 1 1
1 2 1
1 1 2

+

−1

3
+

1

3

(
1

4

)n−1
× I

=
1

3

[1−(1

4

)n]
×

2 1 1
1 2 1
1 1 2

+

−1 +(1

4

)n−1
× I


=

1

3

[1−(1

4

)n]
×

2 1 1
1 2 1
1 1 2

+

[
−1 + 4

(
1

4

)n]
× I


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Conclusion : Mn =
1

3


1 +

2

4n
1−

1

4n
1−

1

4n

1−
1

4n
1 +

2

4n
1−

1

4n

1−
1

4n
1−

1

4n
1 +

2

4n

 si n ∈ N

➂ Troisième méthode : On pose Aλ = M − λI =
1

4

2− 4λ 1 1
1 2− 4λ 1
1 1 2− 4λ

 où λ ∈ R.

a) Soit (Sλ) le système homogène Aλ ·

x
y
z

 =

0
0
0

.

i. (Sλ) n’est pas un système de Cramer si et seulement si la matrice associée Aλ n’est pas
inversible ou encore si et seulement si rg(Aλ) < 3.

rgAλ = rg

2− 4λ 1 1
1 2− 4λ 1
1 1 2− 4λ

 = rg

 1 1 2− 4λ
1 2− 4λ 1

2− 4λ 1 1

 (L3)
(L2)
(L1)

= rg

1 1 2− 4λ
0 1− 4λ −(1− 4λ)
0 −1 + 4λ 1− (2− 4λ)2

 (L1)
(L2 − L1)
(L3 − (2− 4λ)L1)

avec 1− (2− 4λ)2 = [1− (2− 4λ)][1 + (2− 4λ)] = (4λ− 1)(3− 4λ).
D’où :

rgAλ = rg

1 1 2− 4λ
0 1− 4λ −(1− 4λ)
0 −1 + 4λ (4λ− 1)(3− 4λ)


= rg

1 1 2− 4λ
0 1− 4λ −(1− 4λ)
0 0 P (λ)

 (L1)
(L2)
(L3 + L2)

avec P (λ) = (1− 4λ)(4λ− 3)− (1− 4λ) = (1− 4λ)(4λ− 3− 1) = 4(1− 4λ)(λ− 1).

En conséquence, rgAλ < 3⇔ 1− 4λ = 0 ou P (λ) = 0⇔ 1− 4λ = 0 où λ− 1 = 0.

Conclusion : (Sλ) n’est pas de Cramer si λ = λ1 = 1 ou λ = λ2 =
1

4

ii. Soit Eλ l’espace vectoriel solution de (Sλ) dans chacun de ces deux cas.

Par définition, Eλ1 = E1 = {(x, y, x) ∈ R3/A1 ·

x
y
z

 =

0
0
0

 (S1)}

D’après ce qui précède, en prenant λ = 1, on obtient :

(S1)⇔

{
x+ y − 2z = 0

−3y + 3z = 0
⇔

{
y = z

x = z
,∀z ∈ R
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Conclusion : E1 = {(z, z, z), z ∈ R}

Par définition, Eλ2 = E 1
4
= {(x, y, x) ∈ R3/A 1

4
·

x
y
z

 =

0
0
0

 (S 1
4
)}

D’après ce qui précède, en prenant cette fois λ =
1

4
, on obtient :

(S 1
4
)⇔ x+ y + z = 0⇔ z = −y − z, ∀(y, z) ∈ R2

Conclusion : E 1
4
= {(−y − z, y, z), (y, z) ∈ R2}

b) Soit P =

1 −1 −1
1 0 1
1 1 0

. Montrons que P est inversible et calculer P−1 :

On commence par noter que la première colonne est élément de E1 et que les deux dernières
colonnes sont élément de E 1

4
.

On pose X =

x
y
z

 et B =

a
b
c

.

P est inversible si et seulement si le système associé PX = B est un système de Cramer.
On aura alors X = P−1B.

PX = B ⇔


x− y − z = a

x+ z = b

x+ y = c

⇔


z = b− x

y = c− x

x− y − z = x− c+ x− b+ x = a

(L2)
(L3)
(L1)

⇔


x =

1

3
(a+ b+ c)

y = c−
1

3
(a+ b+ c) =

1

3
(−a− b+ 2c)

z = b−
1

3
(a+ b+ c) =

1

3
(−a+ 2b− c)

L’unicité de la solution prouve qu’il s’agit bien d’un système de Cramer.

Conclusion : P est inversible et P−1 =
1

3

 1 1 1
−1 −1 2
−1 2 −1


c) Calculons D = P−1MP ainsi que Dn pour tout entier naturel n :

Un calcul rapide donne :

P−1MP =
1

3

 1 1 1
−1 −1 2
−1 2 −1

 1

4

2 1 1
1 2 1
1 1 2

1 −1 −1
1 0 1
1 1 0


=

1

12

 1 1 1
−1 −1 2
−1 2 −1

4 −1 −1
4 0 1
4 1 0

 =
1

12

12 0 0
0 3 0
0 0 0


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Conclusion : P−1MP =

1 0 0
0 1/4 0
0 0 1/4

 = D

On montre alors par une récurrence immédiate que :

∀n ∈ N, Dn =

1 0 0
0 (1/4)n 0
0 0 (1/4)n


d) Exprimons M en fonction de D, P et P−1 et démontrons que Mn = PDnP−1 pour tout

entier naturel n :

D = P−1MP ⇔ PD = MP ⇔ PDP−1 = M car PP−1 = I3

Démontrons maintenant par récurrence que Mn = PDnP−1 pour tout entier naturel n :

— La relation est vraie pour n = 0 puisque M0 = I = PIP−1 = PD0P−1 et elle est vraie
pour n = 1 d’après ce qui précède.

— Supposons la vraie pour un entier n ≥ 0.
— Alors Mn+1 = Mn ·M = PDnP−1 · PDP−1 = PDnIDP−1 = PDn+1P−1.

Ce qui prouve l’hérédité de cette relation.

Conclusion : ∀n ∈ N, Mn = PDnP−1

e) On obtient dès lors aisément :

Mn =

1 −1 −1
1 0 1
1 1 0

 ·
1 0 0
0 (1/4)n 0
0 0 (1/4)n

 · 1
3

 1 1 1
−1 −1 2
−1 2 −1



Conclusion : Mn =
1

3


1 +

2

4n
1−

1

4n
1−

1

4n

1−
1

4n
1 +

2

4n
1−

1

4n

1−
1

4n
1−

1

4n
1 +

2

4n

, ∀n ∈ N

7 / 15



BCP
∫
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Problème 2 : Epreuve Agro-véto A 2011

➀ Il suffit pour répondre à cette question de vérifier l’égalité. Or :

AY =

2 1 −2
1 0 0
0 1 0

 ·
y′′(x)
y′(x)
y(x)

 =

2y′′(x) + y′(x)− 2y(x)
y′′(x)
y′(x)

 =

y(3)(x)
y′′(x)
y′(x)

 = Y ′

puisque y est solution de (ε′3) .

Conclusion : Y ′ = AY

➁ Soit λ ∈ C et I la matrice identité de taille 3. On pose conformément à l’énoncé :

Mλ =

2 1 −2
1 0 0
0 1 0

−
1 0 0
0 1 0
0 0 1

 =

2− λ 1 −2
1 −λ 0
0 1 −λ


a) Soit f ∈ L(R3) tel que A =MB(f).

rg(f) = rg(A) = rg

−2 2 1
0 1 0
0 0 1

 en permutant les colonnes C1 ← C3 ← C2 ← C1

Donc rg(A) = ordre(A) ce qui permet d’assurer que A inversible.

Conclusion : rg(f) = 3, f est bijective, ker(f) = {0R3} et Im(f) = R3

b)

rg(f − idE) = rg(A− I3) = rg

 1 1 −2
1 −1 0
0 1 −1

 L2 ← L2 − L1

= rg

1 1 −2
0 −2 2
0 1 −1

 L3 ← 2L3 + L2

= rg

1 1 −2
0 −2 2
0 0 0

 = 2

D’où rg(A− I3) = rg(f − idE) = dim(Im(f − idE)) = 2 et donc

dim(ker(f − idE)) = 3− rg(f − idE) = 3− 2 = 1 d’après la formule du rang.

On note par ailleurs, conformément aux indications de l’énoncé, que :

(A− I3)

1
1
1

 =

0
0
0

⇔ (f − idE)(u) = 0

Donc u = (1, 1, 1) ∈ ker(f − id3) qui est une droite vectorielle.

Conclusion : ker(f − id3) = Vect{u} où u = (1, 1, 1)
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c) Pour tout λ ∈ R, montrons que l’ensemble des solutions de (Sλ) est un sous-espace vectoriel
de R3 qu’on notera Eλ. Pour cela, définissons plus clairement Eλ en posant :

Eλ = {(x1, x2, x3) ∈ R3/(x1, x2, x3) solution de (Sλ)} = {X ∈M3,1(R)/Mλ ·X = 0}.
Dès lors :
— Eλ ⊂ R3 par définition de Eλ.
— 0R3 est solution évidente de (Sλ) donc 0R3 ∈ Eλ.
— ∀X1, X2 ∈ Eλ, ∀α ∈ R, montrons que αX1 +X2 ∈ Eλ :

Il suffit de dire que :
Mλ · (αX1 +X2) = αMλ ·X1 +Mλ ·X2

Or Mλ ·X1 = 0 et Mλ ·X2 = 0 car X1 et X2 sont solutions de (Sλ)

donc Mλ · (αX1 +X2) = 0 ou encore αX1 +X2 ∈ Eλ

Conclusion : Eλ est un sous-espace vectoriel de R3

d) Le système homogène (Sλ) n’est pas un système de Cramer si et seulement si la matrice
assocéeMλ n’est pas inversible, ou encore, puisque c’est une matrice d’ordre 3 si et seulement

si rg(Mλ) < 3 .

Déterminons en fonction de λ le rang de Mλ (nous prendrons, une fois n’est pas coutume,
le pivot en haut à droite...) :

rg(Mλ) = rg

2− λ 1 -2
1 −λ 0
0 1 −λ

 = rg

 2− λ 1 −2
1 −λ 0

−λ(2− λ) 2− λ 0



♦ Premier cas : Si λ = 0 alors rg(Mλ) = rg

2 1 −2
1 0 0
0 2 0

 = rg

−2 2 1
0 1 0
0 0 2

 = 3

Donc si λ = 0 le système Sλ est un système de Cramer.

♦ Second cas : Si λ ̸= 0, rg(Mλ) = rg

2− λ 1 −2
1 −λ 0

P (λ) 0 0

 (L1)
(L2)
(L3 ← λL3 + (2− λ)L2)

avec P (λ) = −λ2(2− λ) + (2− λ) = (2− λ)(−λ2 + 1) = (λ− 2)(λ− 1)(λ+ 1)

Conclusion : Sλ n’est pas de Cramer pour : λ1 = −1, λ2 = 1 et λ3 = 2

e) En λ1 = −1, le système précédent équivaut à{
3x +y −2z = 0

x +y = 0
⇔

{
z = x

y = −x

On voit alors que le sous-espace propre associé à −1 est la droite vectorielle engendrée par
v = (1,−1, 1).
Conclusion : E−1 = Vect{(1,−1, 1)} = Vect{u1}.
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En λ2 = 1 le système précédent équivaut à :

{
x +y −2z = 0

x −y = 0
⇔

{
z = x

x = y

On voit alors que le sous-espace propre associé à 1 est la droite vectorielle engendrée par
(1, 1, 1).

Conclusion : E1 = Vect{(1, 1, 1)} = Vect{u2}.

En λ = 2 le système précédent équivaut à

{
y −2z = 0

x −2y = 0
⇔

{
z = 1

2
y

x = 2y

On voit alors que le sous-espace propre associé à 2 est la droite vectorielle engendrée par
(4, 2, 1).

Conclusion : E2 = Vect{(4, 2, 1)} = Vect{u3}.

f) Montrons que B1 = (u2, u1, u3) est une base de R3 :
Commençons par noter que Card(u2, u1, u3) = 3 = dimR3 donc nous nous contenterons de
montrer que cette famille est libre pour montrer que c’est une base de R3.

Soit (λ1, λ2, λ3) ∈ R3/λ1u2 + λ2u1 + λ3u3 = 0 (∗)

(∗)⇔


λ1 + λ2 + 4λ3 = 0

λ1 − λ2 + 2λ3 = 0

λ1 + λ2 + λ3 = 0

⇔


λ1 + λ2 + 4λ3 = 0

2λ1 + 6λ3 = 0

3λ3 = 0

(L1)
(L2 ← L2 + L1)
(L3 ← L1 − L3)

Conclusion : λ1u2 + λ2u1 + λ3u3 = 0⇒ λ1 = 0 = λ2 = λ3 ; famille libre

La famille (u2, u1, u3) étant formée de trois vecteurs, on en déduit qu’ il s’agit d’une base de R3 .

Conclusion : B1 = (u1, u2, u3) est une base de R3

g) On pose P =

1 1 4
1 −1 2
1 1 1

 matrice de la famille de vecteurs (u2, u1, u3).

D’après la question précédente il est immédiat que rg(P ) = rg{u2, u1, u3} = 3 = ordre(P ).

Conclusion : P est inversible
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Inversons P : Quels que soient les réels x, y, z, a, b, c on a :

P

x
y
z

 =

a
b
c

 ⇔


x +y +4z = a

x −y +2z = b

x +y +z = c

⇔


x +y +4z = a

2x +6z = a+ b L2 ← L2 + L1

3z = a− c L3 ← L1 − L3

⇔


y = 1

6
a −1

2
b +1

3
c

x = −1
2
a +1

2
b +c

z = 1
3
a −1

3
c

On en déduit

x
y
z

 = P−1

a
b
c

 où P−1

−1
2

1
2

1
1
6
−1

2
1
3

1
3

0 −1
3

 .

P−1 =
1

6

−3 3 6
1 −3 2
2 0 −2



h) Par le calcul, il est immédiat que P−1AP = D =

1 0 0
0 −1 0
0 0 2


➂ Soit y une solution de (ε′3) sur R.

a) On a
Y ′ = AY = PDP−1Y.

On obtient alors directement le résultat en multipliant cette égalité par P−1 à gauche. Soit :

P−1Y ′ = DP−1Y

b) On pose Z = P−1Y .
Connaissant P−1, il suffit de faire le produit matriciel pour en déduire l’expression de z1, z2
et z3 en fonction de y, y′ et y′′.
A savoir :

z1 = −
1

2
y′′ +

1

2
y′ + y

z2 =
1

6
y′′ −

1

2
y′ +

1

3
y

z3 =
1

3
y′′ −

1

3
y

y étant une solution de (ε′3) , on en déduit qu’elle est de classe C3 sur R.
Dès lors, y′ est de classe C2 et y′′ est de classe C1 sur R, autrement dit y, y′ et y′′ sont trois
fonctions de classe C1 sur R. Il vient alors que z1, z2 et z3 sont de classe C1 sur R en tant
que combinaisons linéaires de fonctions de classe C1 sur R.
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c) En dérivant les relations précédentes, on obtient :

z′1 = −
1

2
y(3) +

1

2
y′′ + y′

z′2 =
1

6
y(3) −

1

2
y′′ +

1

3
y′

z′3 =
1

3
y(3) −

1

3
y′

Ou encore, puisque par hypothèse, Y ′ =

y(3)(x)
y′′(x)
y′(x)

, Z ′ = P−1Y ′ .

La question 3.a) permet de conclure : Z ′ = P−1Y ′ = DP−1Y = DZ .

d) Z ′ = DZ ⇔ Z ′ =

1 0 0
0 −1 0
0 0 2

z1(x)
z2(x)
z3(x)

⇔
z′1(x)
z′2(x)
z′3(x)

 =

 z1(x)
−z2(x)
2z3(x)

.

Reprenant en particulier l’expression de z1, on en déduit : z′1 = z1 La résolution des équa-

tions différentielles du premier ordre permet d’en déduire qu’il existe un réel λ tel que
z1(x) = λex, pour tout réel x.

➃ Détermination de l’ensemble S ′
3 des solutions de (ε′3) sur R :

a) D’après la question 3.b) on vient de prouver que y vérifie l’équation différentielle

z1(x) = λex = −1
2
y′′ + 1

2
y′ + y ou encore (∗∗)− y′′ + y′ + 2y = 2λex.

L’équation caractéristique associée à (∗∗) est −r2+r+2 = 0, qui admet pour racines −1 et 2
(après éventuel calcul du discriminant). On en déduit que la solution générale de l’équation
homogène associée à (∗∗) est

x 7→ Ae−x +Be2x, (A,B) ∈ R2

Quant à déterminer une solution particulière, on peut toujours dire que yp : x 7−→ λex est
solution évidente... sinon on posera yp(x) = Q(x)ex où Q ∈ R[X]. Dès lors :

y′p(x) = (Q′(x) +Q(x))ex et y′′p(x) = (Q′′(x) + 2Q′(x) +Q(x))ex

Soit

−y′′p(x) + y′p(x) + 2yp(x) = (−Q′′(x)− 2Q′(x)−Q(x) +Q′(x) +Q(x) + 2Q(x)) ex =
(−Q′′(x)−Q′(x) + 2Q(x)) ex = 2λex

et puisque ex ̸= 0 pour tout x réel, on a :

−Q′′(x)−Q′(x) + 2Q(x) = 2λ et donc Q(x) = λ

Au final, on voit que y est de la forme y(x) = Ae−x +Be2x + λex.

Conclusion : Si y ∈ S ′
3, ∃(A,B, λ) ∈ R3 tels que y(x) = Ae−x +Be2x + λex.

ou encore

Conclusion : S ′
3 ⊂ V ect{x 7→ e−x, x 7→ e2x, x 7→ ex}
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b) Pour établir la réciproque, il reste à vérifier si toute fonction de la forme y(x) = Ae−x +
Be2x + λex est bien une solution de (ε′3) , ce qui se fait trivialement :

y(3)(x)− 2y′′(x)− y′(x) + 2y(x) =
(
−Ae−x + 8Be2x + λex

)
−2
(
Ae−x + 4Be2x + λex

)
−
(
−Ae−x + 2Be2x + λex

)
+2
(
Ae−x +Be2x + λex

)
= 0.

D’où le résultat.

S ′
3 = V ect(x 7→ e−x, x 7→ e2x, x 7→ ex)

➄ On déduit du résultat ci-dessus que S ′
3 est le sous-espace vectoriel de C∞(R,R) engendré par

x 7→ e−x, x 7→ e2x, x 7→ ex, à savoir par une famille finie de vecteurs de C∞(R,R) qui est un
R-espace vectoriel.
Pour démontrer que celui-ci est de dimension 3, il suffit de mettre en évidence une base et, la
famille ci-dessus étant génératrice, il suffit de prouver qu’elle est libre et pour cela revenons à
la définition :

Soit (λ1, λ2, λ3) ∈ R3/λ1e
−x + λ2e

2x + λ3e
x = 0, ∀x ∈ R (∗ ∗ ∗).

Cette égalité est en particulier vrai par passage à la limite en −∞. D’où

λ1 = 0

Donc (∗ ∗ ∗)⇒ λ2e
2x + λ3e

x = 0, ∀x ∈ R.

(∗ ∗ ∗)⇒

{
λ2 + λ3 = 0

λ2e
2 + λ3e = 0

(x = 0)
(x = 1)

⇔

{
λ2 + λ3 = 0

λ2e+ λ3 = 0
⇔ λ2 = λ3 = 0

Conclusion : (x 7→ e−x, x 7→ e2x, x 7→ ex) est une base de S ′
3 .

ou encore :

Conclusion : S ′
3 est un R-espace vectoriel de dimension 3.

✐ Remarque (Pour une lecture en fin d’année) : Pour montrer que la famille {x 7→ e−x, x 7→
e2x, x 7→ ex} est libre, on peut aussi utiliser le cours « Réduction d’endomorphismes » en remar-
quant que x 7→ e−x, x 7→ e2x, x 7→ ex sont des vecteurs propres associées à des valeurs propres
deux à deux distinctes (en l’occurrence −1, 2 et 1) de l’application linéaire Ψ : f 7→ f ′. Ce qui
termine la démonstration...

➅ Si y(0) = 1, y′(0) = 0 = y′′(0), déterminons la solution analytique de (ε′3) :

D’après la question précédente, on sait que si y est solution de (ε′3), alors

∃(a, b, c) ∈ R3/y(x) = ae−x + bex + ce2x

d’où l’on tire : y′(x) = −ae−x + bex + 2ce2x et y′′(x) = ax + bex + 4ce2x.
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A l’aide des conditions initiales fournies, on obtient le système ci-dessous qu’il s’agit de ré-
soudre :

y(0) = a+ b+ c = 1

y′(0) = −a+ b+ 2c = 0

y′′(0) = a+ b+ 4c = 0

⇔


a+ b+ c = 1

2b+ 3c = 1

3c = −1

L1

L2 + L1

L3 − L1

⇔


c = −1/3
b = 1

a = 1/3

Conclusion : Il existe une unique solution de (ε′3) vérifiant y(0) = 1, y′(0) = 0 = y′′(0), à savoir :

y(x) =
1

3
e−x + ex −

1

3
e2x

➆ Une approximation numérique de la solution par la méthode d’Euler :

Nous utilisons pour ça les notations suivantes : y′(t) = v(t) et y′′(t) = a(t) pour tout t ≥ 0 afin
d’écrire, puisque y vérifie (ε′3) :

a′(t) = y′′′(t) = 2a(t) + v(t)− 2y(t)

v′(t) = a(t)

y′(t) = v(t)

On rappelle alors que pour h suffisamment petit :
a(t+ h) ≈ a(t) + h · a′(t) = a(t) + h(2a(t) + v(t)− 2y(t)) = (1 + 2h)a(t) + hv(t)− 2hy(t)

v(t+ h) ≈ v(t) + h · v′(t) = v(t) + ha(t)

y(t+ h) ≈ y(t) + h · y′(t) = y(t) + hv(t)

Prenons pour exemple y(0) = 1, y′(0) = 0 = y′′(0). On construit ensuite une valeur approchée
de la solution en prenant y0 = 1, v0 = 0 et a0 = 0 puis en construisant pas à pas les valeurs
successives de y, v et a qu’on notera yn, vn et an pour tout n ∈ N en posant :

an+1 = (1 + 2h)an + hvn − 2hyn

vn+1 = vn + han

yn+1 = yn + hvn

Soit :

def simulSolutionEe(y0,v0,a0,h,t0,tf):

nbe_pas = int((tf-t0)/h)

y = [0]*(nbe_pas+1)

v = [0]*(nbe_pas+1)

a = [0]*(nbe_pas+1)

y[0],v[0],a[0] = y0,v0,a0

for pas in range(nbe_pas):

a[pas+1] = (1+2*h)*a[pas]+h*v[pas]-2*h*y[pas]

v[pas+1] = v[pas]+h*a[pas]

y[pas+1] = y[pas]+h*v[pas]

return y,v,a
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