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Devoir maison 3 : Dénombrement et
probabilités

Problème : Où, dans le génome, débute la réplication de l’ADN?

Partie I :

1. Une séquence d’ADN de longueur N étant donnée, ainsi qu’un mot de longueur k, on cherche à savoir
si ce mot est présent ou non et, si oui, combien de fois.

a) Si i désigne la place occupée par la première lettre d’un mot de longueur k au sein de la séquence,
dire en fonction de N et de k quelles sont les valeurs possibles prises par i ?
On n’oublie pas qu ’en Python, les lettres de la séquence seront indicées de 0 à N − 1.
Tout mot de k lettres à sa première lettre qui peut donc commencer à l’indice i = 0 ou, au
maximum, à l’indice i = N − k puisque, si le mot est en fin de séquence, sa dernière lettre sera
en place N − 1, son avant-dernière en place N − 2 et donc sa première en N − k.

Conclusion : i ∈ J0, N − kK

b) Écrire une fonction Python decompte(sequence,mot) qui retourne le nombre de fois où un k-
mère « mot » est présent dans une séquence d’ADN.
Exemple : decompte(oriC,’ATGATCA’)=5 et decompte(oriC,’TAGATCA’)=0

Analyse : On commence par déterminer les longueurs N de la séquence et k du mot recherché.
Après avoir initialisé le compteur à 0, on parcourt la séquence en faisant varier la première place
possible i du mot de 0 à N − k.
Le nombre de répétitions étant connues, on utilise pour ça une boucle « pour ».
Alors, si la sous-séquence de longueur k commençant à la place i est égale au mot cherché, on
incrémente le compteur de 1.

Programme :

def decompte(sequence,mot):

N=len(sequence)

k=len(mot)

cpt=0

for i in range(N-k+1):

if sequence[i:i+k]==mot:

cpt=cpt+1

return cpt

2. On cherche à obtenir les k-mères les plus fréquents au sein d’OriC, k étant un entier naturel fixé.

a) Analyser et expliquer en commentant chacune des lignes le rôle de cette fonction :
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def effectifMots(sequence,k):

N=len(sequence)

compte=[0]*(N-k+1)

for i in range(N-k+1):

mot=sequence[i:i+k]

compte[i] = decompte(sequence, mot)

return compte

A la ligne 1 on calcule la longueur de la séquence.
Puis on initialise une liste appelée compte formée de N − k + 1 zéros.
On considère alors successivement tous les mots de k lettres de la séquence, la première lettre
prenant successivement les places 0 à N − k et on compte le nombre de fois où ils sont présents.
A l’issue de la fonction, compte est une liste contenant l’effectif de chaque mot commençant à la
place i.

b) Si sequence=’ACAACAATTTGCAATAATTT’ que retourne effectifMots(sequence,3) ?
’ACA’ est présent 2 fois donc compte[0]=2
’CAA’ est présent 3 fois donc compte[1]=3
etc.
’TTT’ est quant à lui présent 2 fois et donc compte[17]=2

Conclusion : compte = [2, 3, 1, 2, 3, 3, 2, 2, 1, 1, 1, 3, 3, 1, 1, 3, 2, 2]

c) Écrivons une fonction maximum(L) permettant de retourner le maximum d’une liste L :

C’est une fonction bien connue pour laquelle il suffit, par exemple, d’initialiser le maximum au
premier terme de la liste puis de parcourir l’ensemble de la liste par une boucle « Pour » afin
d’affecter au maximum tout terme de la liste qui lui est supérieur :

def maximum(L):

n=len(L)

m=L[0]

for k in range(1,n):

if L[k]>m:

m=L[k]

return m

d) On dit qu’un k-mère est le plus fréquent si aucun autre k-mère n’est plus fréquent que lui.
Ecrivons une fonction motsLesPlusFrequents(sequence,k) qui retourne le ou les mots les plus
fréquents de longueur k d’une séquence d’ADN donnée ainsi que leur effectif :

Analyse : Une idée possible consiste à appeler la fonction compte=effectifMots(sequence,k)

afin d’obtenir chacun des effectifs des mots de k lettres au sein de la séquence.
On recherche ensuite l’effectif maximum grâce à la fonction maximum écrite en c).
Il suffit alors de parcourir toute la liste compte et à chaque fois que l’effectif compte[i] (pour
i ∈ J0, N − kK) est maximum, on ajoute le mot commençant à la place i à la liste des mots les
plus fréquents.

Programme :
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Première version :

1 def motsLesPlusFrequents(sequence , k):

2 compte=effectifMots(sequence ,k)

3 motifsFrequents = []

4 effmax = max(compte)

5 N=len(sequence)

6 for j in range(N-k+1):

7 if compte[j] == effmax:

8 motifsFrequents.append(sequence[j:j+k])

9
10 return effmax ,set(motifsFrequents)

✐ la fonction set de Python permet d’éviter les répétitions dans une liste.
Ainsi set([1,4,3,2,4,1,3])={1,2,3,4}

Deuxième version :

1 def motsLesPlusFrequents2(sequence , k):

2 compte=effectifMots(sequence ,k)

3 motifsFrequents = []

4 effmax = max(compte)

5 N=len(sequence)

6 for j in range(N-k+1):

7 if compte[j] == effmax and sequence[j:j+k] not in motifsFrequents:

8 motifsFrequents.append(sequence[j:j+k])

9
10 return effmax ,motifsFrequents

Conclusion : En appliquant la fonction précédente à OriC de V. cholerae, on obtient avec une
fréquence égale à 3, les quatre 9-mères suivants :

ATGATCAAG, CTTGATACAT, TCTTGATCA, CTCTTGATC

Partie II :

Les quatre 9-mères obtenus précédemment, à cause de leur effectif, sont de bons candidats pour constituer
des sites de fixation pour DnaA. Pour en décider, il faut pourtant pouvoir dire si cet effectif peut être dû au
hasard ou si son caractère exceptionnel doit attirer notre attention.
Cette partie est consacrée à évaluer la probabilité qu’il existe un 9-mère apparaissant trois fois ou plus dans
une séquence aléatoire d’ADN de longueur 500.

1. On suppose qu’une séquence S d’ADN de longueur n est un n-uplet d’un alphabet A = {A,C,G, T}.
a) Dénombrons les séquences possibles de longueur n :

Il s’agit d’une n-liste d’éléments pris dans un ensemble de cardinal 4 donc :

Card(Ω) = 4n

b) Pour former le début d’un mot, on prélève deux lettres prises au hasard au sein de l’alphabet A.
Quelle est la probabilité que ces deux lettres soient les mêmes ?

Soit M l’événement : « les deux lettres sont identiques ».
La première lettre de chaque mot formant une 2-liste, on peut répondre à cette question en mettant
en évidence les cas favorables, à savoir :

{(A,A), (C,C), (G,G), (T, T )}
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Dès lors, parce que le tirage de chaque lettre est équiprobable, on a :

P(M) =
Card(M)

Card(Ω)
=

4

16
=

1

4

Une deuxième méthode consiste à appliquer la formule des probabilités totales...
On considère le système complet d’événements : {A,C,G, T} où A, C, G et T désignent respec-
tivement les événements : « tirer la lettre A, C, G et T ».
Alors, d’après la formule des probabilités totales :

P(M) = P(M ∩A) + P(M ∩ C) + P(M ∩G) + P(M ∩ T )

Or P(M ∩A) = P(A1 ∩A2) où Ak désigne l’événement : « tirer la lettre A au k-ième tirage ».

donc P(M ∩A) = P(A1) · P(A2) =
1

4
·
1

4
=

1

16
car les événements sont indépendants.

De même, P(M ∩ C) =
1

16
= P(M ∩G) = P(M ∩ T )

Conclusion : P(M) =
1

16
+

1

16
+

1

16
+

1

16
= 4 ·

1

16
=

1

4

c) Si M et N sont deux 9-mères formés au hasard à partir de l’alphabet A, quelle est la probabilité
que M soit égale à N ?
M et N sont égaux si et seulement si les nucléotides qui les composent sont égaux deux à deux.
Posons M = (M1, · · · ,M9) et N = (N1, · · · , N9).

P(M = M) = P ((M1 = N1) ∩ · · · ∩ (M9 = N9)) =

4∏
i=1

P(Mi = Ni)

car les évènements (Mi = Ni) sont mutuellement indépendants.

Conclusion : P(M = N) =

(
1

4

)9

Un alphabet de cardinal a étant donné, on cherche à déterminer la probabilité P(N, a,mot, t) qu’un
k-mère mot donné apparaisse au moins t fois (t ∈ N) dans une séquence de longueur N .

2. Nous commençons avec A = {P, F} de cardinal 2 (lancers successifs d’une pièce équilibrée).

a) i. Déterminons combien de mots de 4 lettres il est possible de former avec un tel alphabet :
Chaque mot peut être considéré comme une 4-liste d’un ensemble à 2 éléments.

D’où Card(Ω) = 24 = 16 . La description complète est :

Ω = {(P, P, P, P ), (P, P, P, F ), (P, P, F, P ), (P, P, F, F ), (P, F, P, P )

(P, F, P, F ), (P, F, F, P ), (P, F, F, F ), (F, F, P, P ), (F, F, P, F )

(F, F, F, P ), (F, F, F, F ), (F, P, P, P ), (F, P, P, F ), (F, P, F, P ), (F, P, F, F )}

ii. Déterminons la probabilité P(4, 2, PF, 1) d’obtenir au moins une fois le mot « PF » au sein de
cette séquence : Le plus rapide est de passer par l’événement complémentaire, à savoir « ne
jamais obtenir le mot « PF ». Or il y a cinq résultats ne faisant pas apparâıtre le mot « PF » :

(P, P, P, P ), (F, F, P, P ), (F, F, F, P ), (F, F, F, F ), (F, P, P, P )

Dès lors, P(4, 2, PF, 1) = 1−
5

16
=

11

16
.

4 / 11



BCP
∫
t2 - Devoir maison - novembre 2025

iii. Déterminons la probabilité P(4, 2, PP, 1) d’obtenir au moins une fois le mot PP :
Ici il est équivalent de passer ou pas par l’événement complémentaire...
Il y a huit résultats qui font apparâıtre au moins une fois le mot « PP » :

(P, P, P, P ), (P, P, P, F ), (P, P, F, P ), (P, P, F, F ), (P, F, P, P ), (F, F, P, P ), (F, P, P, P ), (F, P, P, F )

Dès lors, P(4, 2, PP, 1) =
8

16
=

1

2
< P(4, 2, PF, 1)

b) Toujours au sein d’une séquence de N = 4 lettres prises dans l’alphabet A de cardinal 2, déter-
minons la probabilité P(4, 2, PF, 2) que le mot « PF » apparaisse au moins t = 2 fois :
Reprenons Ω décrit plus haut et dénombrons les cas favorables.
Il n’y en a qu’un, à savoir ; (P, F, P, F )

Dès lors, P(4, 2, PF, 2) =
1

16
De même, il est aisé de voir que

P(4, 2, PP, 2) =
3

16
> P(4, 2, PF, 2)

c) On cherche cette fois à déterminer la probabilité P(25, 2, PF, 1) de voir apparâıtre dans une sé-
quence de N = 25 lettres prises dans l’alphabet A = {P, F} de cardinal 2 le mot PF au moins
t = 1 fois.

On pose Bk l’évènement : « on obtient pour la première fois Pile suivi de Face aux lancers k et
k + 1 ».
i. Calculons P(B1) et P(B2) :

Introduisons les notations suivantes :
Soit Pk l’évènement : « obtenir Pile au k-ième lancer ».
et Fk l’évènement : « obtenir Face au k-ième lancer ».
Les épreuves correspondant aux lancers successifs de la pièce de monnaie étant indépendantes,
les évènements associés à ces épreuves sont mutuellement indépendants. D’où on tire :

P(B1) = P(P1 ∩ F2) = P(P1) · P(F2) =
1

2
·
1

2
=

1

4
et

P(B2) = P(P1∩P2∩F3)+P(F1∩P2∩F3) = P(P1)·P(P2)·P(F3)+P(F1)·P(P2)·P(F3) =
1

8
+
1

8
=

1

4

ii. Montrons que : ∀k ≥ 2, P(Bk) =
1

2
P(Bk−1) + (1/2)k+1 :

On considère le système complet d’événements : {P1, F1} associé au premier lancer. Alors,
d’après la formule des probabilités totales :

P(Bk) = P(Bk ∩ P1) + P(Bk ∩ F1) = PP1(Bk)P(P1) + PF1(Bk)P(F1)

Or, les épreuves étant indépendantes, les événements associés sont mutuellement indépendants
et on a :

PP1(Bk) = P(P2 ∩ · · · ∩ Pk ∩ Fk+1) = P(P2) · · ·P(Pk)P(Fk+1) =
1

2k−1

1

2
=

1

2k

De plus, si on a obtenu Face au premier lancer, tout se passe comme si on recommençait à
attendre l’apparition de la première succession (P, F ) au bout de k − 1 lancers. Donc :

PF1(Bk) = P(Bk−1)

Dès lors :

P(Bk) =
1

2k
P(P1) + P(Bk−1)P(F1) =

1

2k+1
+

P(Bk−1)

2
, ∀k ≥ 2
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iii. Soit la suite (uk)k∈N∗ définie par uk = 2kP(Bk) pour tout k ≥ 1. Montrons que la suite (uk)
est une suite arithmétique de raison 1/2 et de premier terme u1 = 1/2 :
D’après ce qui précède, on a :

u1 = 2P(B1) =
2

4
=

1

2
et ∀k ≥ 2, uk = 2kP(Bk) = 2k−1P(Bk−1) +

1

2

Conclusion : (uk) est une suite arithmétique définie par : u1 =
1

2
et ∀k ≥ 2, uk = uk−1 +

1

2

On en déduit que ∀k ≥ 1, uk = u1 + (k − 1)
1

2
=

1 + (k − 1)

2
=

k

2
.

En divisant par 2k, on obtient :

P(Bk) =
uk

2k
=

k

2k+1
pour tout k ≥ 1

iv. Montrons que les Bk, k ≥ 1 forment un système quasi-complet d’évènements :

Montrons que la série
∑

P(Bk) converge et que
∞∑
k=1

P(Bk) = 1 :

∑
k≥1

P(Bk) =
∑
k≥1

k

2k+1
=
∑
k≥1

1

4
k(

1

2
)k−1

or
∑
k≥1

k(
1

2
)k−1 est une série géométrique dérivée convergente car q ∈]0, 1[.

Sa somme vaut S1 =
∞∑
k=1

k(
1

2
)k−1 =

1

(1− 1/2)2
= 4

Donc,
∑
k≥1

1

4
k(

1

2
)k−1 converge car la multiplication par λ =

1

4
ne change par la nature de la

série.

Conclusion :
∑
k≥1

P(Bk) converge de somme

∞∑
k=1

P(Bk) =
1

4
4 = 1

Si on ajoute que
∞⋃
k=1

Bk n’est pas Ω puisqu’il s’agit de l’événement « obtenir le mot « PF » lors

d’une succession de lancers de pièce de monnaie » alors on a montré qu’il s’agit d’un système
quasi-complet d’événements plutôt que de système complet d’événements.

v. Exprimons l’événement : « obtenir le mot PF au moins t = 1 fois au sein d’une séquence de
N = 25 lettres prises dans A = {P, F} » à l’aide des événements Bk :
On note qu’on obtient le mot PF au moins une fois au sein d’une séquence de 25 lettres si et
seulement si on l’obtient au moins une première fois entre les places 1 et 24.
Dès lors :

P(25, 2, PF, 1) = P(
24⋃
k=1

Bk) =
24∑
k=1

P(Bk) =
1

4
·

24∑
k=1

k(
1

2
)k−1

puisque les événements Bk sont deux à deux incompatibles.

Effectuons le calcul de T =

24∑
k=1

k(
1

2
)k−1 :

Soit P (x) =
24∑
k=0

xk =
1− x25

1− x

6 / 11



BCP
∫
t2 - Devoir maison - novembre 2025

Donc P ′(x) =
24∑
k=0

kxk−1 =
− 25x24(1− x) + (1− x25)

(1− x)2
.

Dès lors, en prenant x = 1/2 :

T =
−

25

224
·
1

2
+ 1− (

1

2
)25(

1

2

)2 =

(
−

25

225
+ 1−

1

225

)
· 4 =

(
1−

26

225

)
· 4

Conclusion : P(25, 2, PF, 1) =
1

4
· T = 1−

26

225
= 1−

13

224
≈ 0.9999

✐Remarque : Pour obtenir cette réponse, on pouvait se passer d’exprimer P(25, 2, PF, 1) en
fonction des Bk. En effet, en passant par l’événement contraire :

P(25, 2, PF, 1) = 1− P(25, 2, PF, 0)

avec : Card(25, 2, PF, 0) = 26 si on note que les cas favorables sont :

(P1, · · · , P25), (F1, P2, · · · , P25), (F1, F2, P3 · · · , P25), · · · , (F1, · · · , F24, P25), (F1, · · · , F25)

Dès lors : P(25, 2, PF, 1) = 1−
26

225
= 1−

13

224

On est quasiment sûr d’obtenir au moins une fois le mot PF sur une séquence de 25 lettres
prises dans {P, F}. En est-il de même des 9-mères obtenus à la fin de la partie I alors qu’on
considérait des séquences de 500 nucléotides ?

d) On considère cette fois une séquence supposée infinie de lettres P et F et on cherche à comparer
la première apparition du mot PF et du mot PP dans cette séquence, en numérotant l’apparition
des lettres à partir de 0.

i. Il va de soit que

(RPF = k) = Bk

où Bk a été défini à la question 2.c).
En effet Bk est réalisé lorsqu’on a obtenu pour la première fois Pile suivi de Face aux lancers
k et k + 1, c’est-à-dire aux lancers d’indices k − 1 et k, autrement dit lorsque (RPF = k) est
réalisé.
Dès lors :

E(RPF ) existe si
∑

kP(Bk) =
∑ k2

2k+1
converge (absolument).

Je laisse à votre sagacité la preuve de cette convergence en rappelant que k2 = k(k − 1) + k.
Vous vérifierez à cette occasion qu’on trouve bien :

E(RPF ) =
∞∑
k=1

kP(Bk) =
∞∑
k=1

(
k(k − 1)

2k+1
+

k

2k+1

)
= 2 + 1 = 3

ii. Soit RPP variable aléatoire égale au rang du premier mot « PP ».
On note πk = P(RPP = k).
— Déterminons π0 et π1 :

π0 est la probabilité d’obtenir « PP »en un seul lancer. C’est un événement impossible.
Donc π0 = 0

π1 = P(P1 ∩ P2) = P(P1) · P(P2) =
1

4
car les événements sont indépendants.

7 / 11



BCP
∫
t2 - Devoir maison - novembre 2025

— Montrons en utilisant la formule des probabilités totales que :

πk =
1

2
πk−1 +

1

4
πk−2, ∀k ≥ 2

On considère comme en 2.c) le système complet d’événements : {P1, F1}.
Alors, d’après la formule des probabilités totales :

πk = P(RPP = k) = P((RPP = k) ∩ P1) + P((RPP = k) ∩ F1)

= PP1(RPP = k) · P(P1) + PF1(RPP = k) · P(F1)

avec (RPP = k) conditionné par P1 réalisé si, et seulement si, on a Face au deuxième lancer
(sinon PP serait réalisé dès le deuxième lancer !) puis PP pour la première fois au bout de
k − 2 lancers, soit

(RPP = k) = F2 ∩ (RPP = k − 2)
et (RPP = k) conditionné par F1 réalisé si, et seulement si, on obtient pour la première
fois PP au bout de k − 1 lancers.
Dès lors :

πk = P(RPP = k) = P (F1 ∩ (RPP = k − 2))
1

2
+ P(RPP = k − 1)

1

2

= P(F1)P(RPP = k − 2))
1

2
+ P(RPP = k − 1)

1

2
car F1 et (RPP = k) indépendants

=
1

4
πk−2 +

1

2
πk−1

Conclusion : (πk) est une suite récurrente linéaire d’ordre 2

— déduisons de ce qui précède la loi de RPP : Exprimons πk en fonction de k...

Soit (Ec) l’équation caractéristique : r2 −
1

2
r −

1

4
= 0

Son discriminant vaut ∆ =
1

4
+ 1 =

5

4
> 0.

(Ec) admet donc deux racines réelles : r1 =
1

2
·
1 +

√
5

2
et r2 =

1

2
·
1−

√
5

2

et d’après le cours sur les suites récurrentes linéaires d’ordre 2 :
∃a, b ∈ R, πk = a · rk1 + b · rk2 , ∀k ≥ 1

Déterminons a et b grâce aux conditions initiales :

(S) = ⇔

{
π0 = a+ b = 0

π1 = ar1 + br2 =
1
4

⇔

b = −a

a(r1 − r2) =
1

4

⇔


b = −

√
5

10

a =

√
5

10

car r1 − r2 =

√
5

2

Conclusion : ∀k ≥ 0, πk =

√
5

10
(rk1 − rk2)

✐ Les plus courageux vérifierons que πk ≥ 0, que la série
∑

πk converge et

∞∑
k=0

πk = 1.

iii. Justifions l’existence puis déterminons l’espérance de RPP qu’on comparera à celle de RPF :
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Il s’agit de montrer que la série
∑

kP(RPP = k) converge abs. et de calculer sa somme.

Étudions donc la nature de
∑ √

5

10
(krk1 − krk2) qui est une série à termes positifs :

On rappelle que
∑

krk−1
1 et

∑
krk−1

2 convergent en tant que séries géométriques dérivées de

raisons respectives r1 et r2 toutes deux comprises entre 0 et 1.

Or kP(RPP = k) =
r1
√
5

10
krk−1

1 −
r2
√
5

10
krk−1

2 .

Conclusion :
∑

kP(RPP = k) converge (abst) par comb. linéaire de séries cvgtes

Alors E(RPP ) existe et vaut : E(RPP ) =

∞∑
k=0

kP(RPP = k).

Avant de calculer cette somme, notons au préalable que, puisque r1 et r2 sont racines de (Ec) :

r2 −
1

2
r −

1

4
= 0 on a :

r1 + r2 =
1

2
et r1r2 = −

1

4

Dès lors :

∞∑
k=0

kπk =

√
5

10

(
r1

(1− r1)2
−

r2

(1− r2)2

)

=

√
5

10
·
r1(1− 2r2 + r22)− r2(1− 2r1 + r21)

((1− r1)(1− r2))2

=

√
5

10
·
r1 − r2 + r1r2(r2 − r1)

((1− r1)(1− r2))2
=

√
5

10
·
(r1 − r2)(1− r1r2)

((1− r1)(1− r2))2

=

√
5

10
·

(r1 − r2)(1− r1r2)

(1− (r1 + r2) + r1r2)2

=

√
5

10
·
√
5

2
·

5/4

(1/4)2
=

5

20
·
5

4
· 16 = 5

car r1 − r2 =

√
5

2
et 1− r1r2 = 1 +

1

4
=

5

4
.

Conclusion : E(RPP ) = 5 > E(RPF ) = 3

Retenons que les rangs d’arrivés des mots dans une séquence dépend de leur composition et que,
y-compris les probabilités P(N, a,mot, t), dépendent du mot considéré. Il est par ailleurs aisé de
concevoir que la difficulté pour obtenir cette probabilité augmente avec la longueur de ce mot. Pour
cette raison, nous nous contentons dans la suite d’approximer cette probabilité plutôt que de la cal-
culer exactement.

3. Nous supposons cette fois un alphabet A de cardinal a = 3. Considérons par exemple N = 7 tirages
successifs avec remise dans une urne contenant en égale proportion des boules numérotées 0, 1 et 2.
L’alphabet est alors A = {0, 1, 2}, S = 1220110 est une séquence de longueur N et 01 est un mot de
deux lettres.
On cherche à déterminer P(7, 3, 01, 2)
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a) Le nombre de séquences de 7 lettres possibles vaut 37 puisque chaque séquence est un 7-uplet
d’un ensemble A de cardinal 3.

b) Montrons qu’il y a exactement

(
5
2

)
tirages possibles amenant deux mots 01 et un triplet de 2 :

Il y a autant de tirages amenant deux mots 01 dans une séquence de 7 lettres que de façons de
placer deux ∗ parmi cinq places possibles.
Par exemple : (2, ∗, ∗, 2, 2) ou (∗, ∗, 2, 2, 2) ou encore (2, 2, 2, ∗, ∗)

Conclusion : Il y a

(
5
2

)
= 10 tirages possibles amenant deux 01 et un triplet de 2

c) Déduisons-en une approximation de P(7, 3, 01, 2) :
Une fois les deux mots 01 placés, il reste à compléter les trois places libres par un triplet de lettres
prises dans A.
Or il y a 33 = 27 3-uplets possibles d’éléments de A.
Donc, les tirages étant équiprobables on peut estimer que :

P(7, 3, 01, 2) ≈
33 · 10
CardΩ

=
27 · 10
37

=
270

2187
≡ 0.1234567890123456789....

(Ouhaaa... joli nombre ! )

Ce n’est pourtant qu’une approximation car nous n’avons pas obtenu exactement P(7, 3, 01, 2).
En effet, le nombre de cas favorable est surestimé puisqu’il compte plusieurs fois certaines sé-
quences (en nombre négligeable par rapport à 2187). Par exemple :

— Si le deux mots 01 sont placés en places 0 et 1 : (∗, ∗, ·, ·, ·) = ( 0,1,0,1 , ·, ·, ·) alors les trois
« · »étant constitués par tous les triplets possibles de A, on aura en particulier :

( 0,1,0,1 , 0, 1, 0) ou ( 0,1,0,1 , 0, 1, 1) ou encore ( 0,1,0,1 , 0, 1, 2)

— Mots qu’on retrouvera dans le cas où les deux mots 01 sont en places 2 et 3 : (·, ·, ∗, ∗, ·) =
(·, ·, 0,1,0,1 , ·) alors en complétant les trois points par des triplets de A on obtiendra en
particulier :

(0, 1, 0,1,0,1 , 0) ou (0, 1, 0,1,0,1 , 1) ou encore (0, 1, 0,1,0,1 , 2)

Nous pouvons conclure que
270

2187
est une valeur approchée par excès de P(7, 3, 02, 2)

4. Généralisation : Nous cherchons cette fois à approcher P(N, a,mot, t) probabilité d’obtenir au sein
d’une séquence de longueur N formée de lettres prise dans un alphabet A de cardinal a le k-mère
mot au mot t fois.

a) De combien de façon pouvez-vous implanter trois 9-mères (supposés sans recouvrement) dans une
séquence d’ADN de longueur 500 ?
On généralise ce qui a été fait précédemment. Pour nous aider, nous représentons cette fois encore
les trois 9-mère par trois « ∗ » dont il s’agit de trouver les places possibles.
En dehors de ces 9-mères, il reste à choisir 500 − 3 · 9 = 473 nucléotides et le nombre de places
possibles pour les trois « ∗ » est donc égale à 473 + 3 = 476.

Dès lors, le choix des places étant sans répétition et sans ordre, on a :

(
476
3

)
façons de placer les

trois « ∗ » parmi 476 places possibles.

Conclusion : Il y a

(
476
3

)
façons d’implanter les trois 9-mères dans notre séquence.
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b) Montrons que P(N, a,mot, t) ≈ p =

(
N − t(k − 1)

t

)
/at·k :

D’après ce qui précède, le nombre de places où implanter nos t k-mères vaut N − t ·k+ t (en effet,
t places pour les t k-mères et N − t · k places pour les autres nucléotides).

Alors, le nombre de places possibles des t k-mères vaut :

(
N − t(k − 1)

t

)
Pour chacune de ces

places il y a : aN−t·k choix de N − t · k nucléotides choisis dans l’alphabet A = {′A′,′C ′,′G′,′ T ′}.

Et comme Card(Ω) = aN (avec ici a = 4), on a : P(N, a,mot, t) ≤

(
N − t(k − 1)

t

)
aN−tk

aN
.

Conclusion : P(N, a,mot, t) ≤

(
N − t(k − 1)

t

)
at·k

c) Déduisons-en la probabilité qu’un k-mère quelconque apparaisse au plus t fois ainsi que la proba-
bilité que tous les k-mères apparaissent moins de t fois dans une châıne aléatoire de longueur N :

Notons

(
N − t(k − 1)

t

)
at·k

la probabilité approximative de P(N, a,mot, t).

La probabilité qu’un k-mère donné apparaisse au plus t fois est la probabilité de l’évènement
contraire et donc cette probabilité vaut 1− p .

Il y a par ailleurs ak k-mères possibles formés à partir de cet alphabet.
Chaque k-mère ayant cette même probabilité 1 − p d’apparâıtre au plus t fois, on en déduit par
indépendance mutuelle de ces évènements la probabilité que tous les k-mères apparaissent moins
de t fois, à savoir :

(1− p)a
k

d) On note P(N, a, k, t) la probabilité qu’il existe un k-mère apparaissant au moins t fois.
D’après ce qui précède :

P(N, a, k, t) = 1− (1− p)a
k
(évènement contraire)

et comme p est proche de zéro on peut utiliser les équivalents usuels, ici : (1 − u)α ≈ 1 − αu et
donc :

P(N, a, k, t) ≈ p · ak =

(
N − t(k − 1)

t

)
at·k

· ak =

(
N − t(k − 1)

t

)
a(t−1)·k

e) On en déduit que

P(500, 4, 9, 3) ≈

(
500− 3 · 8

3

)
4(3−1)·9 =

17861900

68719476736
≈

1

3 · 1300
=

1

3900
≈ 0.00026

Cette probabilité extrêmement faible de trouver des 9-mères répétés par trois fois dans la région oriC
de Vibrio cholerae nous conduit à poser l’hypothèse suivante : l’un des quatre 9-mères obtenu à l’issue
de la partie I représente un potentiel site de fixation pour DnaA.

5. Au regard de l’appariement de Watson-Crick (A−T,C−G) il est immédiat que deux des 9-mères ob-
tenus à l’issue de la première partie sont antiparallèles, à savoir ATGATCAAG et CTTGATACAT .
La protéine DnaA se fixant aussi bien sur chacun des deux brins complémentaires, la probabilité
devient quasi nulle qu’un 9-mère apparaissant six fois au moins dans la région oriC.
Cette effectif qui ne peut être du au seul hasard permet de conclure notre recherche statistique du
site de fixation.
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