
5
Espaces vectoriels

Les objectifs : « Ce chapitre reprend les concepts présentés en première année dans un cadre limité (Kn) et les
adapte brièvement à d'autres espaces, de dimension �nie ou non (on travaille avec K = R ou C).
Les capacités exigibles sont les suivantes : Trouver une base et la dimension d'un espace vectoriel ; calculer le
rang d'une famille �nie de vecteurs ; capacité d'abstraction (ou d'adaptation) pour concevoir une fonction, un
polynôme ou une matrice comme un vecteur. »

1 Structure vectorielle.

1.1 Dé�nition et exemples

On appelle espace vectoriel sur K ou K-espace vectoriel tout ensemble E non vide muni :

➀ D'une addition interne satisfaisant :

∀(u, v) ∈ E2, u+ v ∈ E (Stabilité)
∀(u, v) ∈ E2, u+ v = v + u (Commutativité)
∀(u, v, w) ∈ E3, u+ (v + w) = (u+ v) + w (Associativité)
∃0E ∈ E/∀u ∈ E, u+ 0E = u (Elément neutre)
∀u ∈ E,∃u′ ∈ E/u+ u′ = 0E (E symétrisable)

➁ D'une multiplication externe satisfaisant :

∀u ∈ E, ∀λ ∈ K, λu ∈ E (Stabilité)
∀(u, v) ∈ E2, ∀(λ, µ) ∈ K2 :
(λ+ µ) · u = λ · u+ µ · u (Distributivité)
λ · (u+ v) = λ · u+ λ · v (Distributivité)
λ · (µ · u) = (λµ) · u (Associativité)
1 · u = u (Produit par l'élément neutre)

Dé�nition
Espace vectoriel

Notations : Les éléments de E sont appelés vecteurs et les éléments de K scalaire. 0E désigne le vecteur nul.

Soit E un K-espace vectoriel et F = {u1, · · · , un} une famille de n vecteurs de E. On appelle combinaison linéaire

des vecteurs (u1, · · · , un) de F tout vecteur v de la forme :

v = λ1u1 + · · ·λnun =

n∑
k=1

λkuk où (λ1, ·, λn) ∈ Kn

Dé�nition
combinaison linéaire

Remarque 1.1 :

� Le vecteur nul 0E est combinaison linéaire de toute famille �nie de vecteurs de E.

� Si u est combinaison linéaire des vecteurs de F , alors quelque soit un vecteur w ∈ E, u est combinaison linéaire
des vecteurs u1, · · · , un, w.
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➀ Kn, n ∈ N est un K-espace vectoriel ; En particulier R et R2 sont des R-espaces vectoriels, C et C2 sont des
C-espaces vectoriels et des R-espaces vectoriels.

➁ KI : Ensemble des applications dé�nies sur un intervalle I à valeurs dans K.

➂ Cn(I,K) : Ensemble des fonctions de classes Cn dé�nies sur I à valeurs dans K.

➃ K[X], Kn[X].

➄ Mn,p(K) : matrices n lignes, p colonnes à coe�cients dans K.

Exemples
Exemple fondamentaux

Soit E un K-espace vectoriel, u et v deux vecteurs de E et λ un scalaire de K. Alors :

(i) 0 · u = 0E (ii) λ · 0E = 0E (iii) (−λ) · u = −(λ · u)
(iv) λ · (u− v) = λ · u− λ · v (v) λ · u = 0E ⇔ λ = 0 ou u = 0E

Propriété
Règles de calcul

1.2 Sous-espaces vectoriels

Soit E un K-espace vectoriel. On appelle sous-espace vectoriel de E toute partie non vide de E, à la fois stable par
l'addition de E et stable par la multiplication par un scalaire.

Dé�nition
Sous-espaces vectoriels

Caractérisation des sous-espaces vectoriels :

Soit E un K-espace vectoriel. F est un sous-espace vectoriel de E si :

(i) F ⊂ E (ii) 0E ∈ F (iii) ∀u, v ∈ F , ∀λ ∈ K, λ · u+ v ∈ F

Soit E un K-espace vectoriel.

➀ Si F est un sous-espace vectoriel, alors F muni des mêmes lois que E est un K-e.v.

➁ E et 0E sont deux sous-espaces vectoriels de E

Propriété

Soit E un K-espace vectoriel.
Si F et G sont deux sous-espaces vectoriels de E, alors F ∩G est un sous-espace vectoriel de E

Propriété

Remarque 1.2 : Il est possible d'étendre ce résultat à l'intersection �nie de n sous-espaces vectoriels de E.

Remarque 1.3 : L'union de sous-espaces vectoriels de E n'est pas, en général un sous-espace vectoriel de E.
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Soit E un K-espace vectoriel et F = {u1, · · ·un} une famille �nie de vecteurs de E. L'ensemble des combinaisons linéaires
d'éléments de F est un sous-espace vectoriel de E appelé sous-espace vectoriel engendré par F .
On le note Vect{F} ou encore Vect{u1, · · · , un}

Dé�nition
Sous-espace vectoriel engendré par une famille

Remarque 1.4 : On dit aussi que X est une famille génératrice de Vect{F} et on écrit :

Vect{F} = {λ1u1 + · · ·λnun, (λ1, · · · , λn) ∈ Kn}

Dire dans chaque cas si les ensembles F sont sous-espaces vectoriels des espaces vectoriels E suivants :

� E = Rn : F1 = {(x, y) ∈ R2/y = x} ; F2 = {(x, y, z) ∈ R3/z = x+ y} ;
F3 = {u ∈ R3/∃(α, β) ∈ R2, u = (α, α+ 2β,−β)}

� E = R[X] : F4 = {P ∈ R[X]/P ′(X) = P (X)} ; F5 = {P ∈ R1[X]/P (1) = 1} ; F6 = {P ∈ R1[X]/P (1) = 0} ;

� E = Cn(I,R) : F7 = {f ∈ C1(R,R)/∀x ∈ R, f ′(x)− af(x) = 0} ; F8 = {f ∈ C2(R)/f ′′ − 3f ′ + 2f = 0} ;

� E = Mn(R) : F9 = {M ∈ M2(R)/tM = M} ; F10 = {M ∈ M2(R)/M inversible} ;

F11 =

{
M ∈ M2(R)/∃(a, b) ∈ R2,M =

(
a −b
b a

)}

Exemples
Exemple classiques

2 Familles generatrices et libres. Bases

Soit E une K-espace vectoriel et soit F = {u1, · · · , un} une famille �nie de vecteurs de E. Sous réserve d'existence, F
est dite famille génératrice de F si F = Vect{F}. Autrement dit :

∀u ∈ F,∃(λ1, · · · , λn) ∈ Kn/u = λ1u1 + · · ·+ λnun =

n∑
k=1

λkuk

Dé�nition
famille generatrice �nie d'un espace vectoriel

Remarque 2.1 Si F ⊂ F ′ alors F ′ est aussi une famille génératrice de F .

Soit E un K-espace vectoriel et soit F = {u1, · · · , un} une famille �nie de vecteurs de E.
On dit que la famille F est libre si :

∀(λ1, · · · , λn) ∈ Kn, λ1u1 + · · ·+ λnun = 0 ⇔ λk = 0,∀k ∈ J1, nK

Les vecteurs u1, · · · , un sont dits dans ce cas linéairement indépendants.

Dé�nition
famille libre �nie
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Soit E un K-espace vectoriel et soit F = {u1, · · · , un} une famille �nie de vecteurs de E.
On dit que la famille F est liée si elle n'est pas libre, autrement dit :

∃(λ1, · · · , λn) ∈ Kn \ {(0, · · · , 0)}/λ1u1 + · · ·+ λnun = 0

Dé�nition
famille liée

Toute famille de polynômes non nuls de degrés deux à deux distincts est libre

Exemple
Exemple fondamental de famille libre

➀ Toute sous famille d'une famille libre est libre.

➁ {u, v} ⊂ E∗. u et v sont colinéaires si, et seulement si, {u, v} est liée.

➂ Si 0E ∈ F alors F est liée.

➃ Si F contient deux fois le même vecteur alors cette famille est liée.

Propriété

Sous réserve d'existence, on appelle base d'un espace vectoriel E toute famille de E à la fois libre et génératrice.

Dé�nition
Base �nie d'un espace vectoriel

➀ B1 = ((1,−2, 0), (0, 3, 1), (1, 2, 1)) est une base de R3

➁ B2 = ((X − 1)2, X(X − 1)2) est une base de F2 = {P ∈ R3[X]/P (1) = 0 = P ′(1)}

➂ B3 = (1, X − 2, (X − 2)2) est une base de R2[X].

➃ B4 = (x 7−→ ex, x 7−→ e2x) est une base de F4 = {f ∈ C2(R)/f ′′ − 3f ′ + 2f = 0}

➄ Pour (a, b) ∈ R2, déterminer une base de B = {f ∈ C2(R)/f ′′+af ′+ bf = 0} selon le nombre de solutions
dans R de l'équation caractéristique de l'équation di�érentielle y′′ + ay′ + by = 0.

Exemples

Si B = {e1, · · · , en} est une base de E alors tout vecteur u de E se décompose de façon unique comme combinaison
linéaire des vecteurs de B. Les coe�cients de cette décomposition sont appelés les coordonnées de u relativement à la
base B

Théorèmes
Coordonnées d'un vecteur dans une base
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En reprenant les bases obtenues dans l'exemple ci-dessus, déterminer les coordonnées les coordonnées de u = (a, b, c)
dans la base B1 et les coordonnées de P = 1 +X −X2 ∈ R2[X] dans la base B3.

Exemples

Si B est une base d'un espace vectoriel E de dimension n alors si u = (a1, · · · an)B alors la la matrice des coordonnées

de u dans la base B est une matrice colonne et on note X = MB(u) =

a1
· · ·
an


Notation

Remarque 2.2 Par extension, si B est une base d'un K-espace vectoriel E de dimension n et F = {u1, · · · , up} est
une famille �nie de p vecteurs de E exprimée dans cette base avec

uk = (a1,k, · · · , an,k), ∀k ∈ J1, pK

alors on appelle M = MB(F) la matrice des coordonnées de la famille F dans la base B avec

M =

a1,1 · · · a1,p
... · · ·

...
an,1 · · · an,p

 ∈ M(n,p)(K)

Les bases canonique de Kn et Kn[X] sont respectivement :

B1 = B2 =

3 Dimension.

On dit que l'espace vectoriel E estde dimension finie si E admet une famille génératrice �nie ou encore s'il existe une
famille F de vecteurs de E telle que E = Vect{F}.

Dé�nition
espace vectoriel de dimension �nie

Remarque 3.1 : De toute famille génératrice �nie F d'un espace vectoriel E, on peut extraire une base.

Dans un espace vectoriel E non réduit au vecteur nul et de dimension �nie, toutes les bases ont le même cardinal ; ce
nombre est appelé dimension de E.

Théorèmes
dimension d'un espace vectoriel

Remarque 3.2 Par convention, dim(E) = 0 ⇔ E = {0E}.
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Dans un espace vectoriel de dimension n :

� Toute famille libre a au plus n éléments.

� Une famille libre ayant n éléments est une base.

� Toute famille génératrice a au moins n éléments.

� Une famille génératrice ayant n éléments est une base.

Théorèmes

Si F est un sous-espace vectoriel de E, alors F est de dimension �nie et dimF ≤ dimE.
Si les deux dimensions sont égales, alors F = E.

Théorèmes

Soit F une famille �nie de vecteur d'un K-espace vectoriel E. On appelle rang de F la dimension du sous-espace vectoriel
engendré par F , soit rg(F) = dim(Vect{F}). C'est donc aussi le plus grand nombre de vecteurs issus de F formant une
famille libre.

Dé�nition
Rang d'une famille de vecteurs

Remarque 3.3 : Le rang d'une famille de vecteurs peut se calculer comme le rang de la matrice des coordonnées de
la famille dans n'importe quelle base.

Remarque 3.4 : Une famille de vecteurs est libre si, et seulement si, son rang est égale à son cardinal.
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