Polynomes.

Rappels du programme de BCPST1

@® Polynémes, régles de calculs.

n

e Un polyndme P est une fonction définie sur R par P(x) = Zakxk, ol a € R pour tout k € [0, n].
k=0

e Définitions de mondmes, coefficients, polynéme nul.

e Connaitre les cas particuliers : polyndbmes constants, fonctions affines, fonctions puissances entiéres.

e Les opérations usuelles (combinaisons linéaires, produit, composée) sur les polyndmes fournissent
des polynémes.

e Unicité de I'écriture des polyndmes : un polynémes a coefficients dans R est nul si, et seulement si,
touts ses coefficients sont nuls.

e coefficients dominant, degré d'un polynéme.

e Polyndme dérivé. Degré du polynGme dérivé.

@ Racines et factorisations.

e Racines réelles d’un polynéme : un nombre réel « est racine d'un polynédme P si, et seulement si, il
existe un polyndme @ tel que P(x) = (x — «)Q(z) pour tout x € R.

e (Généralisation a plusieurs racines distinctes.
e Le nombre de racines distinctes d'un polynéme non nul est majoré par son degré.
e Un polynbme de degré impair a au moins une racine réelle.

e Un polynébme de degré n € N* possédant n racines distinctes s'écrit sous la forme
P:xvr—ap(x—ay) - (x—ay).

® Racines multiples.

e Ordre de multiplicité.

e Une racine a d'un polyndme P est une racine multiple si, et seulement si, P/(«) = 0.

1 Polynoémes, régles de calcul.

& Remarque : Sauf mention contraire, dans la suite de ce chapitre, K désigne R ou C.

On désigne par X ['application qui a tout x dans K associe x.




Définition 1.1.
On appelle monéme a coefficient dans K I'application K — K telle qu'il existe p € N et a, € K* définie par :
T —— ayz?

On la note a, XP.

Définiti
Définition 1.2

Soit K =R ou C. On appelle polynéme d’indéterminée X, a coefficients dans K toute application

n
P=Zaka=ao+a1X+-~anX"
k=0

ot les ay, € K, pour tout k € [0,n] sont appelés les coefficients du polynéme P.
siK =R, on parlera de polynéme a coefficient dans R, sinon on parlera de polynéme a coefficient dans C.

Remarque

Remarque 1.1

On notera aussi bien P que P(X) pour désigner le polynéme P. Aussi on prendra soin de ne pas confondre ces
deux notations avec P(x) qui est égale a I'image de x par P et qui est un élément de K.

Remarque 1.2

| Le polynéme nul coincide avec I'application nulle sur K et a ce titre, tous ses coefficients sont nuls.

Proposition 1.1. Structure d’espace vectoriel

P q
Soient P = Z apX* et Q = Z b X" deux polynémes a coefficients dans K. Alors, pour tous (\, ) € K2,
k=0 k=0

p
o \P = Z Xap X" est un polynéme a coefficients dans K.
k=0
maz(p,q)
o P+ Q= Z (ar + bk)Xk est un polynéme a coefficients dans K.
k=0
Plus généralement :

maz(p,q)

AP+uQ= Y (Aay+ pbp) X"
k=0

est un polynéme a coefficients dans K.




Proposition 1.2. Produit de deux polynémes

p q
Soient P = Z ap X" et Q = Z b X" deux polynémes a coefficients dans K. Alors :
k=0 k=0
p+q k
P x Q = chXk ou C = Zaibk—i = Z aibj
k=0 i=0 i+j=k
C’est un polynéme a coefficients dans K.
Proposition 1.3. Composition de deux polyndémes

n
Etant donnés P = Z aka et QQ, deux polynémes a coefficients dans K. Alors :
k=0

PoQ=P@Q) =) aQ"
k=0

Remarque
Remarque 1.4

e Dans le cas particulier @ = X, le polyndme P(Q) = P(X) est égale a P.
C’est pourquoi on utilise aussi bien P que P(X) pour désigner ce polynéme.

e SiP=0,alorsPo@Q=0etsi(P#0etQ=0), alors Po@Q = P(0).

Propriété . L o A
Proposition 1.4. Unicité de I'écriture des polynémes

Deux polynémes sont égaux si, et seulement si, tous leurs coefficients sont égaux.

Remarque

Cette proposition permet d’'assurer que les coefficients d’un polynéme caractérisent ce polynéme.
Ceci fournit une nouvelle notation des polynémes :

e X%=(1,0,0,0,---,0,-+)
L4 XlZ(O,l,O,O,"' 707"')
e X¥=1(0,0,0,0,---,1,---),Vk €N

et plus généralement :

Remarque 1.5

n
k
P:Zak‘X = (a07a17a27"' ,CLn,0,0,"')
k=0




2 Degré d’un polynome.

Remarque 2.1

Lorsqu’un polynéme P n’est pas nul, I'ensemble {k € N/ay # 0} est une partie non vide de N, majorée. Elle
admet un plus grand élément.

Définiti
Définiton 2.1

n
Soit P = Z ap X" un polynéme a coefficients dans K. On définit le degré de P par :
k=0

—00 siP=0

{ma.:c{k €NJay #0} siP#0

On le note deg(P) ou degP.

Remarque 2.2

n
e Un polynbme P = Z%X k est de degré inférieur ou égal a n. Il est de degré n si, et seulement si,
k=0
an, # 0. Dans ce cas le coefficient a,, s'appelle le coefficient dominant du polynéme.
e Un polynéme (non nul) dont le coefficient dominant est égal a 1 est appelé « polyndme unitaire » ou
« normalisé ».

Proposition 2.1. opérations élémentaires et degré
Soient P et Q) deux polyndmes a coefficients dans K. Alors :
e deg(P + Q) < max(deg(P),deg(Q)), avec égalité si deg(P) # deg(Q)
e deg(PQ) = deg(P) + deg(Q)
e Si P et QQ sont non nuls, deg(P o Q) = deg(P) x deg(Q)

On note :
e R[X] I'ensemble des polynémes a coefficients dans R.

e R, [X] I'ensemble des polynémes a coefficients dans R de degré inférieur ou égal a n. Soit :

R, [X] = {P € R[X],deg(P) < n}




On note :
e C[X] I'ensemble des polynémes a coefficients dans C.

e C,[X] I'ensemble des polynémes a coefficients dans C de degré inférieur ou égal a n. Soit :

Cn[X] = {P € C[X], deg(P) < n}

A On rappelle que le degré du polyndme nul est donné par deg(0) = —oo. Dés lors, pour tout n € N,
K, [X] contient le polyndme nul.
Ko[X] est I'ensemble des polyndme de degré au plus égal a 0... Il s’agit donc de I'ensemble des polynémes
constants.

Remarque 2.3

o SideK et PeK[X], alors :

deg(P) sSiA#0
—0o0 siA=0

deg(AP) = {

e Si(\u) eK?et(P,Q)eK[X]? alors :

deg(AP + pQ) < maz(deg(P), deg(Q))

3 Racines et factorisation.

Remarque 3.1

n
Soit P = Z ap X" un polynéme a coefficients dans K.

k=0
Pour tout o« € K

P(a) = Zaka(a) = Zakak
k=0 k=0

En pratique, on acceptera de dire qu'on « substitue » o @ X ou qu'on « remplace » X par «.

Définition 3.1.
Soit P € K[X].
Un élément o de K est racine de P si P(a) = 0.




Propriéteé o
Proposition 3.1.

Un nombre réel ou complexe «v est racine d’un polyndme P si, et seulement si, il existe un polynéme Q tel que
P=(X-0a)Q.

Propriété

Proposition 3.2.
p

Siaq, s, -+, sont p racines distinctes de P, alors il existe un polynéme @), tel que P = Q, H(X — ;).

i=1

Propriété

Proposition 3.3.
Un polynéme non nul de degré n admet au plus n racines distinctes.

Remarque
Remarque 3.1

On utilise souvent cette propriété pour montrer qu’'un polynéme est nul :
e soit en exhibant n + 1 racines distinctes alors que deg(P) < n.

e Soit en exhibant une infinité de racines.

Exemple
@ Soit n € N. S'il existe un polynéme P € R[X] tel que
P(cos(z)) = cos(nz), Vo € R

Alors ce polynéme est unique.

@ La fonction exponentielle complexe n'est pas polynémiale.

RENEIGUE

Remarque 3.2
Si P est de degré n et admet n racines distinctes o, - -+ , oy, alors :

n

P=XJ[(xX - o)

=1

ot \ est le coefficient dominant de P.




Définition P
Définition 3.2.
Soit P un polynéme non nul de K[X], a € K et un entier naturel p non nul. On dit que « est :

e racine d’ordre au moins p de P si il existe un polynome @ € K[X| tel que P = (X — a)PQ.

e racine d’ordre p de P si a est racine d'ordre au moins p mais pas d’ordre p + 1. L’entier p est appelé
ordre de multiplicité de la racine «.

e racine multiple de P si « est racine d’ordre au moins 2.

Remarque
Remarque 3.3

Soit P un polynéme non nul de degré n. Si « est racine de P alors son ordre de multiplicité est un entier
inférieur ou égal a n.

Propriété

Proposition 3.4.

Soient o une racine d’ordre au moins p d'un polynéme non nul P, et Q € K[X] tel que P = (X — a)PQ.
Alors :

« est racine d’ordre p de P si, et seulement si, Q(«) # 0

’
Proposition 3.5.

Soit P un polynéme non nul de K[X]. Si aq, v, - -+, SONt 1 racines distinctes de P d’ordre respectivement
égale a p1,p2,--- ,p,. Alors

3Q € K[k] tel que P = Q H(X — )P
i=1

Remarque 3.4

Lorsqu’on demande de dénombrer les racines d’un polynéme, on peut :
e Soit compter le nombre de racines distinctes.

e soit compter chaque racine autant de fois que son ordre de multiplicité.

Par exemple P = 3(X + 1)(X — 1)2(X — 2)% admet  racines distinctes et racines comptées avec leur ordre
de multiplicité.

Propriété

Proposition 3.6. - théoréme de d’Alembert
Tout polyndme non constant de C[X| posséde au moins une racine dans C.




Remarque 3.5

Soit P un polynéme non nul de K[X]. Si a, g, - -+, SONt 1 racines distinctes de P d’ordre respectivement

r
égale a p1,p2,--- ,pr et deg(P) = Zp,-. Alors
i=1

,
I\ e K tel qUGP:)\H(X_ai)pi

i=1

Proposition 3.7 - factorisation dans |'ensemble des complexes
Tout polyndme non nul de C[X] est « scindé » sur C. Autrement dit :

n
I\, aq -+, € C (non nécessairement distincts) tels que P = A H(X — ;)
i=1

Remarque 3.6

Ce résultat est évidemment faux dans R[X]| puisque, par exemple, X 2 + 1 n’est pas scindé sur R. Cependant,
tout polynéme a coefficients réels est aussi un polynéme a coefficients complexes et par suite est scindé sur C.

Exemple
Les fonctions symétriques élémentaires des racines d’un polyndme

e Soit P = a2X2 + a1 X +ag € (C[X], as # 0. Alors,
3(1‘1,1’2) € Cz tels que : P = CLQ(X — ml)(X — LL‘Q).

Deés lors :
aj
T +2xr9 = ——
a2
ag
122 =—
ag

o Soit P=a3X?+ as X%+ a1X + ag € C[X], ag # 0. Alors,
3(.%‘1,.%‘2,:63) S (CS tels que ! P = ag(X — xl)(X — .CCQ)(X — .2123).

Dés lors :
a
1 + T2 + x3 = ——
as
aj
T1x9 + X123 + xax3 = +—
as
ag
L1223 = ==
as




Propriété o ~ R o .
Proposition 3.8 - Polynémes a coefficients réels

Soit P € R[X]. Si un complexe « est racine de P, alors @ est racine de P (au méme ordre de multiplicité).

Remarque
Remarque 3.7

On retiendra que, si « est une racine complexe de P, alors :

(X-a)(X-a)=X%2—-(a+@)X +aa = X?—2Re(0)X + |a* € R[X]

Proposition 3.9 - Factorisation dans I'ensemble des réels
Soit P € R[X], non nul. Alors P peut s'écrire sous la forme :

S

P = )\H(X = ai)pi H(X2 + 6; X + ")/i)qi
=1 =1

ou r et s sont deux entiers naturels, \, «;, B; et v; sont des réels vérifiant ﬂ? —4v; < 0 et les p; et q; sont des
entiers naturels non nuls.
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