

T.D. séries numériques réelles

Les objectifs : Sommes partielles, convergence d'une série, somme d'une série convergente.

Combinaison linéaire de séries convergentes.

Théorème de convergence par comparaison pour deux séries à termes positifs.

Convergence et somme de la série géométrique et de ses dérivées.

Convergence et somme de la série exponentielle.

Convergence de $\sum_{n>1} \frac{1}{n^2}$ et divergence de $\sum_{n\geq 1} \frac{1}{n}$.

Convergence absolue.

Exercice 1 •: Travailler avec les séries de référence

Déterminer la nature et la somme éventuelle des séries :

a)
$$\sum_{n\geq 0} (n+1)3^{-n};$$
 b) $\sum_{n\geq 0} \frac{n^2+3n}{2^n};$ c) $\sum_{n\geq 2} \frac{(-1)^n}{n!};$ d) $\sum_{n\geq 1} \ln(n)$ e) $\sum_{n\geq 0} \frac{2^{n+1}}{3^n n!};$ f) $\sum_{n\geq 1} \frac{2n}{(\sqrt{2})^n};$ g) $\sum_{n\geq 0} \frac{n^2+2^n}{n!};$ h) $\sum_{n\geq 1} \frac{2^n}{n^3}$

b)
$$\sum_{n>0} \frac{n^2 + 3n}{2^n}$$

$$c)\sum_{n\geq 2}\frac{(-1)^n}{n!};$$

$$d)\sum_{n\geq 1}\ln(n)$$

$$e) \sum_{n>0} \frac{2^{n+1}}{3^n n!}$$

$$f)\sum_{n\geq 1}\frac{2n}{(\sqrt{2})^n};$$

$$g)\sum_{n\geq 0}\frac{n^2+2^n}{n!}$$

$$h)\sum_{n\geq 1}\frac{2^n}{n^3}$$

Exercice 2 * : Reconnaître les séries télescopiques

Déterminer la nature et calculer la somme éventuelle des séries suivantes :

$$a) \sum_{n \ge 1} \frac{n}{(n+1)!}; \quad b) \sum_{n \ge 1} \frac{1+2+\cdots+n}{1+2^3+\cdots n^3}; \quad c) \sum_{n \ge 2} \ln\left(1-\frac{1}{n^2}\right); \quad d) \sum_{n \ge 2} \left(\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n}}\right)$$

Exercice 3 * : Appliquer le théorème de comparaison

Déterminer la nature des séries suivantes :

$$a) \sum_{n>1} \frac{1}{n \cos^2(n)};$$

a)
$$\sum_{n \ge 1} \frac{1}{n \cos^2(n)}$$
; b) $\sum_{n \ge 1} \frac{\ln(1+n)}{n \ln(n^2+1)}$; c) $\sum_{n \ge 1} \frac{\sin(\pi \sqrt{n})}{n^2}$; d) $\sum_{n \ge 0} \frac{1}{2^n + \frac{1}{2^n}}$

$$c) \sum_{n \ge 1} \frac{\sin(\pi \sqrt{n})}{n^2};$$

$$d) \sum_{n>0} \frac{1}{2^n + \frac{1}{2^n}}$$

Exercice 4 **: Équivalences et théorème de comparaison

Montrer la convergence de $\sum \ln \left(1 + \frac{1}{n^2}\right)$ et la divergence de $\sum \ln \left(\frac{2 + \sin(1/n)}{2 - \sin(1/n)}\right)$.

Exercice 5 :

On considère la suite définie par :

$$u_0 = 1$$
 et $u_{n+1} = u_n \cdot \exp(-u_n), \forall n \in \mathbb{N}$

- ① Montrer que la suite (u_n) converge et déterminer sa limite.
- ② Étudier la nature de la série $\sum u_n$.

Exercice $6 \checkmark$:

Soit $(S_n)_{n\geq 1}$ définie par $S_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ et u et v deux suites respectivement définies par $u_n=S_{2n}$ et $v_n=S_{2n+1}$.

- ① Montrer que les suites (u_n) et (v_n) sont adjacentes.
- ② Conclure que la série $\sum \frac{(-1)^{n-1}}{n}$ converge. On notera par la suite S sa limite.
- ④ En distinguant selon la parité de n, montrer que $|S S_n| \le \frac{1}{n+1}$. En déduire un moyen d'obtenir une valeur approchée à 10^{-p} près de ln(2) où $p \in \mathbb{N}^*$.

Exercice 7 **:

Soit un entier naturel k non nul fixé. Pour tout entier n on définit :

$$I_n = (-1)^{n+1} \int_0^1 \frac{x^{k(n+1)}}{1+x^k} dx; J = \int_0^1 \frac{dx}{1+x^k} \text{ et } u_n = \frac{(-1)^n}{kn+1}$$

2

- ① Déterminer $\lim_{n\to\infty} I_n$. Calculer $J-I_n$.
- ② Montrer que la série $\sum u_n$ converge. Calculer sa somme pour k=1 et k=2.