1

T.D.1 Suites numériques

Remarque

Classement des exercices

Une * signale une application directe des formules du cours ;

Les exercices marqués d'un ♥ indiquent des exercices classiques dont il faut connaître les techniques ; Enfin les ★★ à ★★★ désignent des exercices plus difficiles proposés à l'oral de G2E ou de l'agro.

Les objectifs : Suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2. L'attendu se limite à la maîtrise d'une méthode de calcul du *n*-ième terme. Convergence, divergence. Limite infinie. Théorème de la limite monotone.

Suites adjacentes et théorème des suites adjacentes.

Exemple d'étude de suites du type $u_{n+1} = f(u_n)$.

Croissances comparées : $a^n = o(n!)$ (avec a > 1) et $n^\alpha = o(a^n)$ (avec $\alpha > 0$)

Suites équivalentes.

Exercice 1 *:

- ① Étudier la monotonie de la suite (u_n) définie par $u_n = \frac{\ln(n)}{n^2}$ pour $n \ge 1$. Valider votre réponse grâce à un programme Python.
- ② Même question pour la suite (v_n) définie par $v_n = \sqrt{\frac{n}{n+1}}$ pour $n \ge 0$.

Exercice 2 *:

Soit (u_n) la suite définie par $u_0 = 2$ et : $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{u_n^2 + 1}$.

Montrer que la suite (u_n^2) est arithmétique et en déduire $\lim_{n\to\infty} u_n$.

Exercice 3 * : Les suites usuelles

① Calculer en fonction de n le terme général des suites (u_n) définies par leur premier terme et une relation de récurrence. On indiquera leur nature :

$$\forall n \in \mathbb{N}, \, v_{n+1} = v_n/3, \, v_1 = 2;$$

$$\forall n \in \mathbb{N}, u_{n+1} = 3u_n - 1, u_0 = -10$$

 $\forall n \in \mathbb{N}, v_{n+1} = 3v_n^2$ et $v_0 = 1$ (Un opération préalable est nécessaire...)

② Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite définie par $u_0=-1$ et $\forall n\in\mathbb{N}^*,\ nu_n+u_{n-1}-\frac{2}{(n-1)!}=0$

- a. Étudier la nature de la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout entier n par $v_n=n!u_n$.
- **b.** En déduire l'expression de u_n en fonction de n.
- c. En déduire que la suite (u_n) converge et donner sa limite.
- d. Écrire un programme Python qui détermine le plus petit entier n tel que l'écart à la limite soit inférieur à 10^{-4} .
- ③ Expression dans chaque cas de u_n en fonction de n. Écrire des fonctions Python permettant de valider graphiquement vos résultats.

a.
$$u_{n+2} = 7u_{n+1} - 10u_n$$
 et $u_0 = -1$, $u_1 = 3$.

b.
$$u_{n+2} = -u_{n+1} - u_n$$
 et $u_0 = 1$, $u_1 = \sqrt{3} - \frac{1}{2}$

c.
$$u_{n+2} = 6u_{n+1} - 9u_n$$
, $u_0 = 5$, $u_1 = -2$.

d.
$$u_{n+2} = \sqrt{u_{n+1}u_n}$$
, $u_0 = 1$ et $u_1 = 2$.

Exercice 4 * : Théorème de la limite monotone

Soit
$$(u_n)$$
 la suite définie pour tout $n \in \mathbb{N}^*$ par : $u_n = \sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{k=1}^n \frac{1}{n+k}$

- ① Étudier la monotonie et la convergence de (u_n) .
- @ Écrire une fonction Python suite(n) qui calcule u_n
- 3 Déterminons $\lim_{n\to\infty} u_n$:
 - a. Montrer par application du théorème des accroissements finis que :

$$\frac{1}{x+1} < \ln\left(\frac{x+1}{x}\right) < \frac{1}{x}, \, \forall x \in \mathbb{R}_+^*$$

- **b.** En déduire que $u_n < \ln(2) < u_n + \frac{1}{2n}, \forall n \in \mathbb{N}^*$.
- c. Conclure sur une fonction Python permettant d'obtenir une valeur approchée de ln(2).

Exercice 5 ★ : Télescopages

Pour tout entier
$$n \in \mathbb{N}$$
, on définit $S_n = \sum_{k=2}^n \frac{1}{k(k-1)}$ et $T_n = \sum_{k=1}^n \frac{1}{k^2}$

- ① Calculer S_n pour tout entier $n \ge 2$ et en déduire que (S_n) converge dans \mathbb{R} .
- ② En déduire que (T_n) converge.

Exercice 6 ** Suites adjacentes :

Pour tout entier
$$n$$
 non nul, on note $H_n = \sum_{k=1}^n \frac{1}{k}$ et $A_n = \sum_{k=1}^n \frac{(-1)^k}{k}$

On pose
$$u_n = H_n - \ln(n)$$
 et $v_n = u_n - \frac{1}{n}$

- ① Démontrer que, pour tout $x \in]-1, +\infty[, \ln(1+x) \leq x.$
- ② Montrez que u et v sont deux suites adjacentes. Que pouvez-vous en déduire? On note γ la limite de u (Ce réel est appelé la constante d'Euler).
- ③ À partir de quel entier est-on assuré que u_n est une approximation de γ à 10^{-3} près?
- 4 Montrer que la suite A_n définie par $\forall n \in \mathbb{N}, A_n = \sum_{k=1}^n \frac{(-1)^k}{k}$ converge vers une limite ℓ . indication : on pourra commencer par étudier les suites (A_{2n}) et (A_{2n+1})
- ⑤ Montrer que pour tout entier n non nul, $A_{2n} + H_{2n} = H_n$. En déduire la valeur de ℓ . Noter que le résultat de la question 2. peut se formuler en : $\forall n \in \mathbb{N}, H_n = \gamma + \ln n + \varepsilon_n, \ où \ \gamma \in \mathbb{R}$ et $(\varepsilon_n)_n$ est une suite suite réelle convergeant vers 0.

Exercice 7 *** (oral Agro-Véto 2017) : suites équivalentes

On considère la suite $(u_n)_{n\geq 1}$ telle que $u_1\in]0; \pi[$ et, pour tout $n\in \mathbb{N}^*$, on a : $u_{n+1}=\left(1+\frac{1}{n}\right)\sin(u_n)$.

- ① Montrer que pour tout $n \ge 3 : 0 < u_n < \frac{\pi}{2}$.
- ② Déterminer le seul réel vers lequel la suite (u_n) peut converger.
- $\$ Représenter graphiquement u_n en fonction de n pour plusieurs valeurs de u_1 , puis émettre une conjecture sur la monotonie de la suite (u_n) .
- 4 Montrer que s'il existe un entier $n_0 \geq 4$ tel que $u_{n_0} \leq u_{n_0-1}$, alors la suite décroît strictement à partir du rang n_0 . (On utilisera une expression de $\frac{u_{n+1}}{u_n}$ en fonction de u_n et u_{n-1}).
- ⑤ Est-il possible que pour tout entier $n \ge 4$, $u_n > u_{n-1}$ Conclure sur la convergence de (u_n) .
- © Émettre une conjecture sur la limite de $\sqrt{n}u_n$.

$$(x_{n+1}-x_n) \underset{n\to\infty}{\sim} \frac{-n^2}{6} x_n^3$$
, puis que $\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \underset{n\to\infty}{\sim} \frac{n^2}{3}$

® En admettant que le résultat précédent permet d'établir la relation suivante : $\frac{1}{x_n^2} \sim \sum_{k=1}^n \frac{k^2}{3}$, vérifier la conjecture faite à la question 7.

Exercice 8 *** (oral Agro-Véto 2018):

$$\forall n \in \mathbb{N} \quad u_n = \int_0^{\frac{\pi}{4}} \tan^{2n+2}(t) dt.$$

- ① Écrire en Python une fonction permettant l'affichage graphique de \tan^2 , \tan^4 , \tan^6 , \tan^8 sur l'intervalle $[0, \pi/4]$.
- ② Faire une conjecture sur la monotonie et l'existence d'une limite de la suite (u_n) et la démontrer.
- 4 De même qu'à la question précédente, en utilisant la valeur de $u_{n+1} + u_n$, donner un majorant de u_n . Donner la limite de (u_n) lorsque n tend vers $+\infty$.
- ⑤ Déterminer un équivalent de u_n lorsque n tend vers $+\infty$.
- © Écrire une fonction prenant n en argument et renvoyant une valeur approchée de u_n .
- - a. Montrer que $\forall t \in [0, \frac{\pi}{4}]$ $(1 + \tan^2 t) \sum_{k=0}^n (-\tan^2)^k (t) = 1 + (-1)^n \tan^{2n+2}(t)$.
 - **b.** Montrer que $S_n = \frac{\pi}{4} + (-1)^n u_n$.
 - c. En déduire un algorithme permettant d'avoir une valeur approchée de π à ϵ près.