DEVOIR MAISON N° 1 : TD1 Suites numériques

Exercice 8:

$$\forall n \in \mathbb{N} \quad u_n = \int_0^{\frac{\pi}{4}} \tan^{2n+2}(t) \, dt.$$

- ① Écrire en Python une fonction permettant l'affichage graphique de \tan^2 , \tan^4 , \tan^6 , \tan^8 sur l'intervalle $[0, \pi/4]$.
- ② Faire une conjecture sur la monotonie et l'existence d'une limite de la suite (u_n) et la démontrer.
- 4 De même qu'à la question précédente, en utilisant la valeur de $u_{n+1}+u_n$, donner un majorant de u_n . Donner la limite de (u_n) lorsque n tend vers $+\infty$.
- $\ \ \,$ $\ \ \,$ Déterminer un équivalent de u_n lorsque n tend vers $+\infty$.
- 6 Écrire une fonction prenant n en argument et renvoyant une valeur approchée de u_n .

- **a.** Montrer que $\forall t \in \left[0, \frac{\pi}{4}\right]$ $(1 + \tan^2 t) \sum_{k=0}^n (-\tan^2)^k (t) = 1 + (-1)^n \tan^{2n+2}(t)$.
- **b.** Montrer que $S_n = \frac{\pi}{4} + (-1)^n u_n$.
- **c.** En déduire un algorithme permettant d'avoir une valeur approchée de π à ϵ près.