DEVOIR MAISON N° 2 : TD2 Études de fonctions

Exercice 10:

Soit n un entier naturel non nul. Soit la fonction f_n définie par $f_n(x) = \frac{1}{1+e^x} + nx$.

- ① Calculer $f'_n(x)$ puis $f''_n(x)$. Montrer que f_n est strictement croissante sur \mathbb{R} .
- ② **a.** Montrer que l'équation $f_n(x)=0$ admet une unique solution u_n sur $\mathbb R$ et montrer que

$$-\frac{1}{n} < u_n < 0$$

- **b.** A l'aide de l'outil informatique de votre choix, conjecturer le comportement de (u_n) et conjecturer la limite de nu_n .
- $\ \$ Compléter le programme suivant pour trouver u_n avec une précision de e, valeur réelle strictement positive.

```
def f(n,x):
    f=1/(1+exp(x))+n*x
    return f

def dichotomie(n,e):
    a,b = ...
    while b-a ...:
        c = (a+b)/2
        if f(n,a)*f(n,c) ...:
        else:
        ...
    return ...
```

- 4 Comparer $f_n(x)$ et $f_{n+1}(x)$. En déduire que la suite (u_n) est croissante.
- \circ Justifier que la suite (u_n) converge vers 0 et calculer la limite de nu_n .
- © Montrer que $u_n+\frac{1}{2n} \mathop{\sim}_{n\to +\infty} -\frac{1}{8n^2}$. Le contrôler à l'aide de la fonction dichotomie.

...D'après Agro-véto 2015