Correction TD02 - Analyse -

Exercice 10 ***:

Soit n un entier naturel non nul. Soit la fonction f_n définie par $f_n(x) = \frac{1}{1 + e^x} + nx$.

① Calculons $f'_n(x)$ puis $f''_n(x)$: On commence par noter que $x \mapsto \frac{1}{1+e^x}$ est de classe \mathcal{C}^2 sur \mathbb{R} car inverse d'une fonction de classe \mathcal{C}^2 sur \mathbb{R} qui ne s'annule pas sur \mathbb{R} .

Comme $x \mapsto nx$ est une fonction polynôme (et donc de classe \mathcal{C}^{∞} sur \mathbb{R}), on peut assurer que :

$$f \in \mathcal{C}^2(\mathbb{R})$$

Dès lors, pour tout x réel, on a :

$$f'_n(x) = \frac{-e^x}{(1+e^x)^2} + n \text{ et } f''_n(x) = \frac{e^x(e^x-1)}{(1+e^x)^3}$$

Montrons que f_n est strictement croissante sur \mathbb{R} :

D'après ce qui précède $f_n''(x)$ est du signe de $e^x - 1$, à savoir **négatif** si x < 0 et **positif** si x > 0.

Donc f'_n est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ avec $f'_n(0) = -\frac{1}{4} + n \ge 0$.

x	$-\infty$	0	$+\infty$
f''(x)	_	0	+
f'(x)		(n-1/4)	+∞

Dès lors,

$$\forall x \in \mathbb{R}, f'_n(x) \ge n - \frac{1}{4} > 0 \text{ car } n \in \mathbb{N}^*$$

 $Conclusion: f_n$ est strictement croissante sur $\mathbb R$

② a) Montrons que l'équation $f_n(x) = 0$ admet une unique solution u_n sur \mathbb{R} et montrons que $-\frac{1}{n} < u_n < 0$:

D'après ce qui précède, f_n est continue et strictement croissant sur \mathbb{R} .

Une étude rapide des limites prouve que sa limite en $-\infty$ vaut $-\infty$ et sa limite en $+\infty$ vaut $+\infty$. On conclut que f_n est une bijection de $\mathbb R$ sur $\mathbb R$.

Dès lors, d'après le théorème de la bijection, $\exists ! u_n \in \mathbb{R}/f(u_n) = 0$.

Il reste à montrer que $u_n \in \left[-\frac{1}{n}, 0\right]$. Or

$$f_n(-\frac{1}{n}) = \frac{1}{1 + e^{-1/n}} - 1 < 0 \text{ car } 1 + e^{-1/n} > 1 \text{ et } f_n(0) = \frac{1}{2} > 0$$

Conclusion: $f_n(x) = 0$ admet une unique solution u_n sur $\left[-\frac{1}{n}, 0\right]$.

- b) A l'aide de Geogebra on suit en fonction de n l'évolution des solutions de $f_n(x) = 0$. On conjecture alors que (u_n) est croissante et converge vers 0. Il semble aussi que nu_n tende en l'infini vers -0.5.
- $\ \$ Complétons le programme suivant pour trouver u_n avec une précision de e>0 :

```
def dichotomie(n,e):
    a,b = -1/n,0
    while b-a >e :
        c = (a+b)/2
        if f(n,a)*f(n,c) <0 :
            b = c
        else:
            a = c
    return c</pre>
```

4 Comparons $f_n(x)$ et $f_{n+1}(x)$:

Plusieurs méthodes possibles:

- On peut noter que $f_{n+1}(x) f_n(x) = x$ et donc : $f_{n+1}(x) < f_n(x)$ si x < 0.
- On peut écrire que si x < 0, alors (n+1)x < nx et donc : $f_{n+1}(x) < f_n(x)$.
- \mathscr{O} On ne retient que le cas x < 0 car on a vu en 2.a) que tous les termes u_n sont négatifs. On peut dès lors poser $x = u_n$ et en déduire comme demandé que la suite (u_n) est croissante. En effet :

$$f_{n+1}(u_{n+1}) < f_n(u_{n+1}) \text{ donc } f_n(u_{n+1}) > 0 = f_n(u_n)$$

Et puisque f_n est strictement croissante sur \mathbb{R} , on en déduit que $u_{n+1} > u_n$.

Conclusion: La suite (u_n) est croissante.

⑤ Justifions que la suite (u_n) converge vers 0 et calculons la limite de nu_n :

Comme la suite (u_n) est croissante et majorée par 0, elle converge vers un réel $l \leq 0$.

L'encadrement obtenu à la question 2.a) permet par ailleurs de conclure directement par passage à la limite que : La suite (u_n) converge vers 0.

Par ailleurs, $f_n(u_n) = 0 \Leftrightarrow nu_n = -\frac{1}{1 + e^{u_n}}$ avec $\lim_{n \to \infty} u_n = 0$.

Conclusion: La suite (nu_n) converge vers $-\frac{1}{2}$

© Montrons que $u_n + \frac{1}{2n} \underset{n \to \infty}{\sim} -\frac{1}{8n^2}$:

Une rédaction possible consiste à montrer que $\lim_{n\to\infty} -8n^2 \cdot \left(u_n + \frac{1}{2n}\right) = 1.$

Puisque $f_n(u_n) = 0$, on a :

$$u_n + \frac{1}{2n} = \frac{1}{2n} - \frac{1}{n} \frac{1}{1 + e^{u_n}}$$
$$= \frac{1}{n} \left(\frac{1}{2} - \frac{1}{1 + e^{u_n}} \right) = \frac{1}{n} \frac{e^{u_n} - 1}{2(1 + e^{u_n})}$$

Donc:

 $egin{array}{c|c} \hline \mathcal{BCP} \int t^2 \ \hline \end{array}$

$$-8n^{2}\left(u_{n} + \frac{1}{2n}\right) = -4n\frac{e^{u_{n}} - 1}{1 + e^{u_{n}}} \underset{n \to \infty}{\sim} -4n\frac{u_{n}}{2}$$

puisque u_n est proche de 0 pour de grandes valeurs de n et donc $e^{u_n} - 1 \underset{n \to \infty}{\sim} u_n$

Il suffit de rappeler que $nu_n \underset{n\to\infty}{\sim} -\frac{1}{2}$

Conclusion: $-8n^2\left(u_n+\frac{1}{2n}\right) \underset{n\to\infty}{\sim} 1$ - Ce qu'il fallait démontrer

On va contrôler ce résultat à l'aide de la fonction dichotomie en évaluant pour de grandes valeurs de n la limite de la suite :

$$v_n = \left(u_n + \frac{1}{2n}\right) \cdot 8n^2$$

Voici le script Python utilisé qui commence par retourner, grâce à la fonction $\mathtt{suiteXn}$ () une liste LX contenant l'ensemble des termes de la suites (u_n) pour n allant de 1 à N.

La fonction graphe permet d'évaluer chacun des termes de la suite (v_n) là aussi pour n allant de 1 à N.

 \mathscr{O} On prendra garde que la liste LX est de longueur N avec LX[0] = u_1 et LX[N] = u_{N-1} .

```
def suiteXn(N):
    LX = []
    for n in range(1,N+1): # termes de X1 à XN
       va = dichotomie(n,eps)
      LX.append(va)
    return LX
def graphe(N):
    abs = np.arange(1,N+1)
    LX = suiteXn(N)
    plt.figure("suite u")
    plt.plot(abs,LX,'ro-')
    Lv = [(LX[k]+1/(2*(k+1)))*(k+1)**2*8 for k in range(N)] # Calcul de v_1 à v_{N-1}
    plt.figure('suite (u_n+1/(2n))*n*n*8')
    plt.plot(abs,Lv,'bo-')
    plt.show()
   graphe(30)
```

