Devoir surveillé 2 : Suites numériques et fonctions

Le sujet se compose de deux exercices et d'un problème. On prendra soin de lire l'ensemble du sujet avant de commencer à composer.

Il sera tenu compte de la présentation et en particulier de l'encadrement des résultats.

L'usage de la calculatrice est autorisé au cours de l'épreuve.

Exercice 1:

① Soit $n \in \mathbb{N}^*$. Donner la valeur des sommes suivantes : $S_n = \sum_{k=0}^{n-1} \frac{1}{2^k}$; $T_n = \sum_{k=1}^n \binom{n}{k} 2^k$.

② On souhaite calculer :
$$S_n = \sum_{k=0}^n k \binom{n}{k}$$
 et $T_n = \sum_{k=0}^n k(k-1) \binom{n}{k}$

- a) Rappeler comment faire ce calcul à l'aide d'une formule qui fait le lien entre $\binom{n}{k}$ et $\binom{n-1}{k-1}$.
- b) Une deuxième méthode existe qui repose sur la fonction f définie sur \mathbb{R} par $f(x) = (x+1)^n$.
 - i. Donner une autre expression de f(x) grâce au binôme de Newton et en déduire que $\sum_{k=0}^{n} \binom{n}{k} = 2^n$
 - ii. Donner deux expressions de f'(x) et f''(x) à l'aide de la question précédente et retrouver les réponses obtenues en 2.a)
- c) Que vaut $U_n = \sum_{k=0}^n k^2 \binom{n}{k}$?

Exercice 2:

Rappel. Algorithme de dichotomie

On considère une fonction g continue sur un segment [a, b].

On suppose que g s'annule exactement une fois sur [a,b] en un point que l'on note α

On définit les suites $(a_k)_{k\geq 0}$ et $(b_k)_{k\geq 0}$ de la façon suivante :

$$- a_0 = a \text{ et } b_0 = b$$

— Pour tout entier naturel k on note $c_k = \frac{a_k + b_k}{2}$. si $g(a_k)g(c_k) \le 0$, alors $a_{k+1} = a_k$ et $b_{k+1} = c_k$ sinon $a_{k+1} = c_k$ et $b_{k+1} = b_k$

On sait alors que les suites (a_k) et (b_k) convergent toutes les deux vers α .

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 - 3x + 1$.

- ① Donner le tableau de variation de f et justifier que f s'annule pour trois réels distinctes α , β et γ où $\alpha < \beta < \gamma$.
- ② Montrer que $\alpha \in [-2, -1], \beta \in [-1, 1]$ et $\gamma \in [1, 2]$.
- ③ Écrire une fonction Python dichotomie(a, b, p) qui renvoie une approximation à 10^{-p} près de l'unique solution de f(x) = 0 sur l'intervalle [a, b].
- 4 Quelles lignes de commande écrivez-vous pour renvoyer successivement les valeurs approchées de α , β et γ à 10^{-3} près?

Problème (d'après Agro-véto B 2024)

Dans le problème, les candidat-e-s peuvent admettre le résultat d'une question ou d'une sous-question pour passer aux questions suivantes, à condition de le mentionner explicitement.

On s'intéresse ici à des modèles déterministes discrets d'évolution d'une population. Dans chacun des modèles, une suite $(v_n)_{n\in\mathbb{N}}$ modélise le nombre d'individus dans la population à la génération n. On supposera $u_0 \neq 0$ et on dit qu'il y a extinction si $\lim_{n\to +\infty} v_n = 0$.

① Pour commencer, on propose le modèle suivant : chaque individu a un nombre moyen de descendants $q\ (q \in \mathbb{R}_+^*)$, de telle sorte que

$$\forall n \in \mathbb{N}, v_{n+1} = qv_n$$

Exprimer v_n en fonction de v_0 et donner une condition d'extinction.

② On propose un nouveau modèle. On définit une suite (v_n) par :

$$v_0 \in \mathbb{R}_+ \text{et } \forall n \in \mathbb{N}, v_{n+1} = v_n + \frac{1}{2}v_n \left(\frac{S - v_n}{S}\right)$$

où $S \in]0, +\infty[$ est une constante du problème.

a) Déterminer une fonction f sur \mathbb{R}_+ telle que

$$\forall n \in \mathbb{N}, v_{n+1} = f(v_n)$$

Faire l'étude de f et dresser son tableau de variations sur \mathbb{R}_+ . On précisera notamment sont comportement asymptotique.

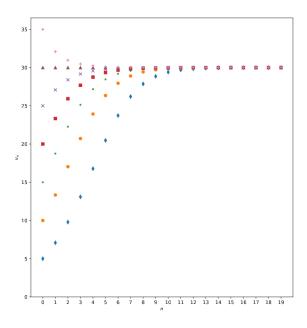
b) Compléter le code suivant pour qu'il trace les 20 premiers termes de la suite.

```
1
       S = 30
2
       v0 = 5
       L = [v0]
       v = v0
       for k in ## LIGNE À COMPLÉTER ##
            ## LIGNE À COMPLÉTER ##
            ## LIGNE À COMPLÉTER ##
       I = [k for k in range(## A COMPLETER ##)]
9
       plt.plot(I, L, 'ro')
       plt.xlabel("n")
10
11
       plt.ylabel("v_n")
12
       plt.show()
```

- c) Pour le tracé, on a utilisé le module matplotlib.pyplot sous l'alias plt. Comment importer le module?
- d) On trace sur la même figure l'évolution de v_n pour différentes valeurs de v_0 . Cela donne les courbes proposées en haut de la page suivante (pour S=30).

Conjecturer sur le comportement de la suite.

- e) On suppose maintenant que $v_0 \in]0, S]$.
 - i. Montrer que pour tout n entier naturel, $v_n \in]0, S[$.
 - ii. Démontrer que (v_n) est croissante.
 - iii. En déduire qu'elle converge et donner sa limite.

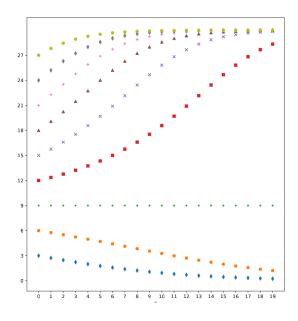


 $\ \$ On souhaite affiner le modèle en modifiant la fonction f. Désormais,

$$v_{n+1} = v_n + \frac{1}{2}v_n \left(\frac{S - v_n}{S}\right) \left(\frac{v_n - A}{S}\right)$$

où $A \in]0, S[$ est fixé.

a) Identifier f. Étudier le signe de f(x) - x sur [0, S]. En déduire l'allure de la courbe représentative de f sur [0, S]. On fera attention à la position relative par rapport à la droite d'équation y = x et on utilisera sans démonstration que f est une bijection strictement croissante de [0, S] sur lui-même. Un code analogue au précédent donne le tracé suivant pour les premiers termes de la suite (v_n) pour S = 30 et A = 9. On se restreint à $v_0 \in [0, S]$.



- b) Dans cette question $v_0 \in]0, A[$. Démontrer que pour tout entier $n \in \mathbb{N}, v_n \in]0, A[$, puis que (v_n) est décroissante. En déduire que (v_n) converge et déterminer sa limite.
- c) Réaliser une étude analogue lorsque $v_0 \in]A, S[$. Que se passe-t-il si $v_0 = A$?
- d) Donner une interprétation (en terme de dynamique des populations) des quantités A et S.