COLLE 1 - SUJET 1 - SUITES NUMERIQUES ET ANALYSE

Cours:

Énoncer le théorème de Rolle.

Exercice 1:

Soit la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = \ln(u_n)$. Cette suite est monotone? tend vers 0? converge? n'est pas définie?

Exercice 2:

Soit f définie sur]1; $+\infty[$ définie par $f:x\longrightarrow \frac{x}{\ln(x)}$

- ① a) Étudier les variations de f.
 - b) Établir que la restriction \tilde{f} de f à]1, e[réalise une bijection sur un intervalle J que l'on précisera.
 - c) Tracer dans un même repère l'allure des graphes de \tilde{f} et \tilde{f}^{-1} .
- ② Montrer que, pour tout entier $n \ge 3$, l'équation $x = n \ln(x)$ admet une unique solution x_n dans]1, e[.
- ③ Estimer le sens de variation de la suite $(x_n)_{n\geqslant 3}$ à l'aide du logiciel Geogebra.
- 4 Démontrer l'hypothèse faite à la question précédente.
- ⑤ En déduire que $(x_n)_{n\geq 3}$ converge vers une limite que l'on déterminera.
- © Retrouver ce résultat à l'aide de l'algorithme de dichotomie (redonné sur la dernière page de cette séquence d'exercices).

COLLE 1 - SUJET 2 - SUITES NUMERIQUES ET ANALYSE

Cours:

Développements limités de $x \longmapsto \frac{1}{1+x}$ et $x \longmapsto \ln(1+x)$.

Exercice 1:

Ensemble de continuité et de dérivabilité de $x \longmapsto \sqrt{\frac{x-1}{x+1}}$

Exercice 2:

Soit la suite (u_n) définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{u_n + 1}, \forall n \in \mathbb{N} \end{cases}$ On pose, pour tout réel $x \geqslant -1, f(x) = \sqrt{x + 1}$

- ① Montrer que $f([0;2]) \subset [0;2]$ et que : $\forall x \in [0;2], |f'(x)| \leqslant \frac{1}{2}$.
- ② Déterminer les points fixes de f. Notons r l'unique point fixe de f dans [0;2]
- 3 Montrer que, pour tout entier $n \in \mathbb{N}$, $0 \leq u_n \leq 2$.
- 4 Montrer: $\forall n \in \mathbb{N}, |u_{n+1} r| \leqslant \frac{|u_n r|}{2}$ puis que $|u_n r| \leqslant \frac{1}{2^{n-1}}$
- \circ Montrer que (u_n) converge et déterminer sa limite.
- © Déterminer un entier N tel que $|u_N r| \leq 10^{-9}$

COLLE 1 - SUJET 3 - SUITES NUMERIQUES ET ANALYSE

Cours:

Rappeler la formule des accroissements finis.

Exercice 1:

Soit
$$f: x \longmapsto \begin{cases} \frac{\sin(x^2)}{x} & \text{si} x > 0 \\ 0 & \text{si} x \le 0 \end{cases}$$
 et $g: x \longmapsto \begin{cases} \frac{\ln(x^2)}{x-1} & \text{si} x > 1 \\ 0 & \text{si} x \le 1 \end{cases}$

Pour chacune de ces fonctions, dire si elles sont continues, dérivables, prolongeables par continuité...

Exercice 2:

On se propose de résoudre l'équation $(x+1)e^{-x} - x = 0$.

- ① On considère la fonction g définie sur \mathbb{R}_+ par : $g(x) = (x+1)e^{-x} x$.
 - a) Étudier les variations de g.
 - b) Montrer que l'équation g(x) = 0 admet une solution α et une seule qui appartient à l'interalle [0, 1[.
- ② On considère la fonction f définie sur [0,1] par $f(x) = \frac{1}{3}[2(x+1)e^{-x} + x]$.
 - a) Démontrer que l'équation f(x) x = 0 admet α comme unique solution.
 - b) Calculer f' et f'' et en déduire les variations de f.
 - c) Soit I = [0.8, 0.9]. Justifier le fait que $\alpha \in I$, que I est stable par f et que pour tout $x \in I$, $f'(x) \in [0, 0.1]$.
- ③ On désigne par (u_n) la suite définie par $u_0 = 0.8$ et pour tout entier naturel $n, u_{n+1} = f(u_n)$.
 - a) Montrer que $|u_{n+1} \alpha| \le \frac{1}{10} |u_n \alpha|$ pour tout $n \in \mathbb{N}$.
 - b) En déduire la convergence et la limite de la suite (u_n) .
 - c) Pour quelle valeur de n obtient-on une valeur décimale approchée de α à 10^{-5} près.

Algorithme de dichotomie

On considère une fonction f continue sur un segment [a, b].

On suppose que f s'annule exactement une fois sur [a,b] en un point que l'on note α On définit les suites $(a_k)_{k\geq 0}$ et $(b_k)_{k\geq 0}$ de la façon suivante :

$$- a_0 = a \text{ et } b_0 = b$$

— Pour tout entier naturel
$$k$$
 on note $c_k = \frac{a_k + b_k}{2}$.
si $f(a_k)f(c_k) \le 0$, alors $a_{k+1} = a_k$ et $b_{k+1} = c_k$
sinon $a_{k+1} = c_k$ et $b_{k+1} = b_k$

On sait alors que les deux suites (a_k) et (b_k) convergent toutes les deux vers α en vérifiant :

$$\forall k \in \mathbb{N}, a_k \leq \alpha \leq b_k \text{ et } \forall k \in \mathbb{N}, b_k - a_k = \frac{b - a}{2^k}$$

On peut alors montrer que si l'entier k est tel que $\frac{b-a}{2^k} \le \varepsilon$, alors a_k et b_k sont des valeurs approchées à ε près de α .