- Programme de colle quinzaine 7... -

Questions de cours :

- $\mathbf{Q1}: f \in \mathcal{L}(E, F)$. Ker f est un sous-espace vectoriel de E. Lien avec l'injectivité.
- $\mathbf{Q2}: f \in \mathcal{L}(E,F)$. Im f est un sous-espace vectoriel de F. Lien avec la surjectivité.
- Q3 : Soit E un \mathbb{K} -espace vectoriel de dimension n muni de deux bases distinctes \mathcal{B}_E et \mathcal{B}_E' et soit Pla matrice de passage de la base \mathcal{B}_E à la base \mathcal{B}'_E .
- Si u un vecteur de E, $X = \mathcal{M}_{\mathcal{B}_E}(u)$ et $X' = \mathcal{M}_{\mathcal{B}_E'}(u)$. Alors : X = PX'.

 Q4: Définition de A et B semblables. Expression de B^n en fonction de A^n (récurrence).
- **Q5**: Soit b > 0. Nature et valeur éventuelle de $\int_0^b \frac{dt}{t^{\alpha}}$ selon $\alpha \in \mathbb{R}_+^*$.
- **Q6**: Soit a > 0. Nature et valeur éventuelle de $\int_a^{+\infty} \frac{dt}{t^{\alpha}}$ selon $\alpha \in \mathbb{R}_+^*$
- **Q7**: $\forall b > a$, $\int_a^b \frac{dt}{(t-a)^{\alpha}}$ converge $\Leftrightarrow \alpha < 1$
- **Q8**: Si f et g sont deux fonctions continues et strictement positives sur $I = [a, +\infty[$ telles que $f(x) \underset{x \to +\infty}{\sim} g(x)$, alors les intégrales généralisées en $+\infty$: $\int_a^{\infty} f$ et $\int_a^{\infty} g$ sont de même nature. Preuve.
- **Q9**: La convergence absolue entraı̂ne la convergence.

EXERCICES: APPLICATIONS LINEAIRES

Sur ce chapitre, les attendus du programme sont : « Obtenir la matrice d'une application linéaire dans des bases données; déterminer un noyau et une image; Théorème du rang; changements de bases. »

- \emptyset Remarque 1: « Toute identification entre vecteur de \mathbb{K}^n et sa représentation matricielle dans une base, même la base canonique, est à éviter ».
- @ Remarque 2 : Toute inversion de matrice se ramènera à la résolution d'un système de Cramer.
- Remarque 3: Les révisions d'intégration de BCPST1 doivent être faites. Ce programme de colle peut donner l'occasion de faire le lien entre les chapitres d'algèbre et et ceux d'intégration.