SUJET 1 -

Rappel. Algorithme de dichotomie

On considère une fonction f continue sur un segment [a,b].

On suppose que f s'annule exactement une fois sur [a,b] en un point que l'on note α On définit les suites $(a_k)_{k\geq 0}$ et $(b_k)_{k\geq 0}$ de la façon suivante :

- $a_0 = a \text{ et } b_0 = b$
- Pour tout entier naturel k on note $c_k = \frac{a_k + b_k}{2}$. si $f(a_k)f(c_k) \leq 0$, alors $a_{k+1} = a_k$ et $b_{k+1} = c_k$ sinon $a_{k+1} = c_k$ et $b_{k+1} = b_k$

On sait alors que les deux suites (a_k) et (b_k) convergent toutes les deux vers α en vérifiant :

$$\forall k \in \mathbb{N}, \ a_k \leq \alpha \leq b_k \text{ et } \forall k \in \mathbb{N}, \ b_k - a_k = \frac{b - a}{2^k}$$

On peut alors montrer que si l'entier k est tel que $\frac{b-a}{2^k} \le \varepsilon$, alors a_k et b_k sont des valeurs approchées à ε près de α .

- ① On considère pour tout entier $n \geq 2$ la fonction f_n définie sur \mathbb{R}_+^* par $f_n(x) = x^n \ln(x) n$.
 - a) Dresser le tableau de variation de f_n .
 - b) On rappelle et on admet l'inégalité suivante : $\forall x \in \mathbb{R}_+^*$, $\ln(x) \leq x 1$ (*) En déduire que pour tout entier $n \geq 2$, il existe un unique réel $u_n \in]0, n^{-1/n}[$ tel que $f_n(u_n) = 0$ et un unique réel $v_n \in]n^{-1/n}, +\infty[$ tel que $f_n(v_n) = 0$.
- ② Étude de la suite (v_n) .

La suite $(v_n)_{n\geq 2}$ vérifie donc l'égalité : $\forall n\geq 2,\ v_n^n-\ln(v_n)-n=0.$

- a) Justifier en utilisant si besoin (*) que $f_n((2n)^{1/n}) > 0$, puis en déduire que : $\forall n \geq 2, v_n \leq (2n)^{1/n}$.
- b) En utilisant l'algorithme de dichotomie, déterminer des valeurs approchées à 10^{-3} près des termes v_n .

le sujet rappelait comment utiliser la fonction plot du module matplotlib.pyplot

- c) Montrer que (v_n) converge et déterminer sa limite l.
- d) On admet le résultat suivant : si $a_n \underset{n \to \infty}{\sim} b_n$ avec $\lim_{n \to \infty} b_n = +\infty$, alors $\ln(a_n) \underset{n \to \infty}{\sim} \ln(b_n)$. On rappelle de plus que $\ln(x) \underset{x \to 1}{\sim} x 1$. Déterminer un équivalent de $v_n l$.
- ③ Étude de la suite (u_n) .
 - a) Proposer une méthode permettant de déterminer des valeurs approchées à 10^{-3} près des termes u_n pour n allant de 2 à 8.
 - b) Calculer $f_n(u_{n+1})$. En déduire le sens de variation de (u_n) .
 - c) Justifier que $\lim_{n\to\infty}u_n^n=0$ puis montrer que u_n est équivalent à e^{-n} .