

Integrales généralisées

Les objectifs : « Les intégrales généralisées sont introduites ici pour définir les variables aléatoires à densité. En dehors de questions probabilistes, les intégrales généralisées ne doivent être utilisées que de manière exceptionnelle et en lien avec des démarches de modélisation. »

1 Intégrales généralisées.

1.1 Intégrale généralisée d'une fonction continue sur un intervalle semi-ouvert

 Définition
 Définition 1.1.

Soit f fonction continue sur [a,b[avec $-\infty < a < b \le +\infty$

f admet une primitive F définie sur [a,b[par $:F(x)=\int_a^x f(t)dt.$

Si il existe un réel l tel que $\underset{x \to b}{lim} F(x) = l$ alors on dit que l'intégrale généralisée $\int_a^b f(t)dt$ converge et vaut l. Elle sera notée $\int_a^b f(t)dt$.

Dans le cas contraire, on dit que $\int_a^b f(t)dt$ diverge.

Exemples 1.1

Préciser la nature (convergence ou divergence) des intégrales suivantes :

$$\text{(i) } I_1 = \int_2^{+\infty} \frac{dt}{\sqrt{t}} \quad \text{(ii) } I_2 = \int_0^{+\infty} \frac{dt}{t^2 + 1} \quad \text{(iii) } I_3 = \int_0^1 \frac{dt}{t^2 - 1}$$

Définition Définition 1.2.

Soit f fonction continue sur]a,b] avec $-\infty \le a < b < +\infty$

Soit G définie sur]a,b] par $:G(x)=\int_x^bf(t)dt.$

Si il existe un réel l tel que $\lim_{x\to a} G(x)=l$ alors on dit que l'intégrale généralisée $\int_a^b f(t)dt$ converge et vaut l. Elle sera notée $\int_a^b f(t)dt$.

Dans le cas contraire, on dit que $\int_a^b f(t)dt$ diverge.

Exemples

Exemples 1.2

Préciser la nature (convergence ou divergence) des intégrales suivantes :

(i)
$$I_1 = \int_0^1 \frac{dt}{\sqrt{t}}$$
 (ii) $I_2 = \int_{-\infty}^0 \frac{dt}{t^2 + 1}$ (iii) $I_3 = \int_{-1}^0 \frac{dt}{t^2 - 1}$

Propriété

prop.1.1. Intégrales faussement impropres

Si f est continue sur [a,b[avec $-\infty < a < b < +\infty$ et prolongeable par continuité en b, alors $\int_a^b f(t)dt$ converge.

De même, si f est continue sur]a,b] avec $-\infty < a < b < +\infty$ et prolongeable par continuité en a, alors $\int_a^b f(t)dt$ converge.

Exemples

Exemples 1.3

Préciser la nature de $I=\int_0^{1/2} \frac{t-1}{\ln t} dt$ et $J=\int_{1/2}^1 \frac{t-1}{\ln t} dt$

Propriété

prop.1.2. Relation de Chasles

Si f est continue sur [a,b[, avec $-\infty < a < b \le +\infty$, alors :

$$\int_{a}^{b} f(t)dt \text{ converge} \Leftrightarrow \int_{c}^{b} f(t)dt \text{ converge}, \forall c \in [a, b[$$

On a alors :

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

2

Remarque : Ce résultat reste vrai si f est continue sur]a,b], avec $-\infty \leq a < b < +\infty$

1.2 Exemples de référence

On supposera $a,b \in \mathbb{R}_+^*/b < a$ et $\alpha \in \mathbb{R}_+^*$.

$$2 I = \int_0^1 \ln t dt$$

Intégrales plusieurs fois impropres

Définition Définition 1.3

Soit f fonction continue sur]a,b[où $-\infty \le a < b \le +\infty$. S'il existe $c \in]a,b[$ tel que les intégrales généralisées $I_1 = \int_a^c f(t)dt$ et $I_2 = \int_c^b f(t)dt$ convergent, on dit que $\int_a^b f(t)dt$ converge et on pose :

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Il suffit qu'il existe $c \in]a,b[$ tel que I_1 ou I_2 diverge pour que l'intégrale diverge.

Exemples

Exemples 1.4

Préciser la nature des intégrales suivantes :

(i)
$$I_1 = \int_0^{+\infty} \frac{dt}{\sqrt{t}}$$
 (ii) $I_2 = \int_{-\infty}^{+\infty} \frac{dt}{t^2 + 1}$ (iii) $I_3 = \int_{-1}^1 \frac{dt}{t^2 - 1}$ (iv) $I_4 = \int_0^1 \frac{t - 1}{\ln t} dt$ (v) $\int_0^{+\infty} \frac{dt}{t^{\alpha}} \left(\alpha \in \mathbb{R}_+^*\right)$

Définition Définition 1.4

Soit f fonction continue sur]a,b[$(-\infty \le a < b \le +\infty)$ sauf en un nombre fini de points c_1,\cdots,c_n tels que :

$$a = c_0 < c_1 < \dots < c_n < c_{n+1} = b$$

Si, pour tout $k \in [0,b]$, l'intégrale généralisée $\int_{c_k}^{c_{k+1}} f(t)dt$ converge, on dite que $\int_a^b f(t)dt$ converge. Dans ce cas :

$$\int_{a}^{b} f(t)dt = \sum_{k=0}^{n} \int_{c_{k}}^{c_{k+1}} f(t)dt$$

Propriété

prop.1.3. Structure d'espace vectoriel

Soit I un intervalle ouvert ou semi-ouvert de $\mathbb R$. L'ensemble des fonctions continues de I à valeurs dans $\mathbb R$ dont l'intégrale sur I converge est un sous-espace vectoriel de l'espace vectoriel des fonctions continues de I dans $\mathbb R$ et l'application $\varphi:f\longmapsto\int f(t)dt$ est une forme linéaire sur ce sous-espace vectoriel.

Si $\int_I \left(\alpha f(t) + \beta g(t)\right) dt$ converge, **ne pas conclure** que $\int_I f(t) dt$ et $\int_I g(t) dt$ convergent.

Exemple Exemple 1.5

 $I = \int_0^1 \frac{e^t - 1}{t} dt$ converge alors que $\int_0^1 \frac{dt}{t} dt$ et $\int_0^1 \frac{e^t}{t} dt$ divergent.

2 Le cas particulier des fonctions positives.

Propriété prop. 2.1

Soit f fonction continue et **positive** sur I, intervalle semi-ouvert de \mathbb{R} .

① Le cas « droit » : soient a et b tels que : $-\infty < a < b \le +\infty$ et I = [a,b[. Alors :

$$\int_a^b f(t)dt \ \text{converge si et seulement si } F: x \longmapsto \int_a^x f(t)dt \ \text{est major\'ee sur } I$$

 $\ \ \, \text{$\mathbb{Q}$ Le cas \it{w} gauche \it{w} : soient \it{a} et \it{b} tels que : $-\infty \leq \it{a} < \it{b} < +\infty$ et $\it{I} =]\it{a},\it{b}]$. Alors : }$

$$\int_a^b f(t)dt \ \text{converge si et seulement si } G: x \longmapsto \int_x^b f(t)dt \ \text{est major\'ee sur } I$$

Théorèmes

Théor. 2.1. Convergence par comparaison pour deux fonctions positives

Soit f et g deux fonctions continues et positives sur I, intervalle semi-ouvert de $\mathbb R$ telles que :

$$\forall t \in I, 0 \le f(t) \le g(t)$$

Que l'on ait I = [a,b[avec $-\infty < a < b \le +\infty$ ou I =]a,b] avec $-\infty \le a < b < +\infty$, alors :

Si
$$\int_a^b g(t)dt$$
 converge, alors $\int_a^b f(t)dt$ converge

Remarque 2.1: Par contraposition, sous les mêmes hypothèses : $\int_a^b f(t)dt$ diverge $\Rightarrow \int_a^b g(t)dt$ diverge.

Exemples 2.1

Préciser la nature des intégrales suivantes :

$$(\textit{i)} \ I_1 = \int_1^{+\infty} \frac{dt}{t(1+t)} \quad (\textit{ii)} \ I_2 = \int_1^{+\infty} \frac{\arctan t}{t^2} dt \quad (\textit{iii)} \ I_3 = \int_0^1 \frac{e^t dt}{t}$$

Remarque 2.2: Si f est négative sur [a,b[ou]a,b[, on appliquera ce théorème à (-f).

Exemple 2.2

Étudier la nature de $I_1 = \int_0^1 \frac{\ln t}{1-t} dt$

Théorèmes

Théor. 2.2. Convergence pour deux fonctions positives équivalentes

Si f et g sont deux fonctions continues et positives sur I=[a,b[, intervalle semi-ouvert de $\mathbb R$ telles que $f(x)\underset{x\to b}{\sim}g(x)$, alors les intégrales généralisées en b: $\int_a^b f$ et $\int_a^b g$ sont de même nature.

Exemple 2.3

Déterminer la nature de l'intégrale $I=\int_1^\infty \sin\left(\frac{1}{\sqrt{t}}\right)\ln\left(1+\frac{1}{t}\right)dt$

Exemple

Exemple 2.4

Soit $f: t \longmapsto t^3 e^{-t} \cdot 1_{\mathbb{R}_+}(t)$. Montrer la convergence de $I_1 = \int_0^{+\infty} f(t) dt$ après avoir étudié $\lim_{x \to +\infty} t^2 f(t)$

Définition

Intégrales absolument convergentes

Soit I un intervalle semi-ouvert de $\mathbb R$ d'extrémités a et b (éléments de $\mathbb R$ ou de $\overline{\mathbb R}$) avec a < b et soit f fonction continue sur I à valeurs dans $\mathbb R$.

sur I à valeurs dans \mathbb{R} . On dit que $\int_a^b f(t)dt$ converge absolument si $\int_a^b |f(t)|dt$ converge.

Propriété

prop 2.2. Intégrales absolument convergentes

Si I est une intégrale absolument convergente, alors I est une intégrale convergente.

Exemple

exemple 2.5

Étudier la nature de $I = \int_{1}^{+\infty} \frac{\sin t}{t^2} dt$

3 Intégrations par parties et changement de variable.

3.1 Intégrations par parties

Propriété

prop 3.1. Intégrations par partie pour intégrales généralisées

Soit f une fonction continue sur I = [a,b[avec $-\infty < a < b \le +\infty$ et soient u et v deux fonctions de classe \mathcal{C}^1 sur I. On suppose que la fonction $u \cdot v$ admet une limite en b par valeurs inférieures. Alors

$$\int_a^b u'(t)v(t)dt$$
 et $\int_a^b u(t)v'(t)dt$ sont de même nature

Si l'une d'elle converge, alors :

$$\int_{a}^{b} u'(t)v(t) = \lim_{x \to b} u(x)v(x) - u(a)v(a) - \int_{a}^{b} u(t)v'(t)dt$$

Évidemment, l'argument s'applique aussi bien à une fonction f continue sur I=]a,b] si $u\cdot v$ admet une limite en a par valeurs supérieures ou même I=]a,b[si $u\cdot v$ admet simultanément une limite en a par valeurs supérieures et en b par valeurs inférieures.

Exemple

exemples 3.1

Montrer la convergence et calculer la valeur de $I_1 = \int_1^{+\infty} \frac{\ln t}{t^2} dt$

Déterminer la nature de $I_2 = \int_1^\infty \frac{\cos t}{t} dt$

3.2 Changement de variable

Propriété

prop 3.2. changement de variable pour les intégrales généralisées

Si la fonction « changement de variable » φ est de classe \mathcal{C}^1 , **strictement monotone** sur un intervalle d'extrémités a et b ayant des limites $\alpha = \underset{t \to a}{lim} \varphi(t)$ et $\beta = \underset{t \to b}{lim} \varphi(t)$ et si f est continue sur l'intervalle d'extrémités α et β , alors les intégrales

 $\int_{\alpha}^{\beta} f(x)dx \text{ et } \int_{a}^{b} f(\varphi(t))\varphi'(t)dt \text{ convergent ou divergent simultanément. En cas de convergence, on obtient :}$

$$\int_{\alpha}^{\beta} f(x)dx = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt$$

Exemple

exemple 3.2

Montrer la convergence et calculer la valeur de $I=\int_0^{+\infty}\frac{dt}{\sqrt{t}+\sqrt{t^3}}$ en posant $x=\sqrt{t}$

Cas particulier important :

- ① Si f est une fonction paire, continue sur]-a,a[telle que $\int_0^a f(t)dt$ converge, alors $\int_{-a}^a f(t)dt=2\int_0^a f(t)dt$ ② Si f est une fonction impaire, continue sur]-a,a[telle que $\int_0^a f(t)dt$ converge, alors $\int_{-a}^a f(t)dt=0$

Exemple

exemple 2.6

Soit
$$f:t\longmapsto \frac{1}{\pi(t^2+1)}$$
. Déterminer la nature et la valeur de $I_1=\int_{-\infty}^{+\infty}f(t)dt$ et de $I_2=\int_{-\infty}^{+\infty}tf(t)dt$

Propriété

Prop. 3.3 - Intégrale de Gauss

L'intégrale
$$\int_{-\infty}^{+\infty} e^{-t^2/2} dt$$
 converge et vaut $\sqrt{2\pi}$