5

Espaces vectoriels

Les objectifs : « Ce chapitre reprend les concepts présentés en première année dans un cadre limité (\mathbb{K}^n) et les adapte brièvement à d'autres espaces, de dimension finie ou non (on travaille avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).

Les capacités exigibles sont les suivantes : Trouver une base et la dimension d'un espace vectoriel ; calculer le rang d'une famille finie de vecteurs ; capacité d'abstraction (ou d'adaptation) pour concevoir une fonction, un polynôme ou une matrice comme un vecteur. »

1 Structure vectorielle.

1.1 Définition et exemples

DéfinitionEspace vectoriel

On appelle espace vectoriel sur $\mathbb K$ ou K-espace vectoriel tout ensemble E non vide muni :

① D'une addition interne satisfaisant :

$$\begin{array}{ll} \forall (x,y) \in E^2, \ x+y \in E & (\textit{Stabilit\'e}) \\ \forall (x,y) \in E^2, \ x+y = y+x & (\textit{Commutativit\'e}) \\ \forall (x,y,z) \in E^3, \ x+(y+z) = (x+y)+z & (\textit{Associativit\'e}) \\ \exists 0_E \in E/\forall x \in E, x+0_E = x & (\textit{El\'ement neutre}) \\ \forall x \in E, \exists x' \in E/x+x' = 0_E & (E \textit{sym\'etrisable}) \end{array}$$

② D'une multiplication externe satisfaisant :

$$\begin{array}{lll} \forall x \in E, \, \forall \lambda \in \mathbb{K}, \, \lambda x \in E & (\mathit{Stabilit\'e}) \\ \forall (x,y) \in E^2, \, \forall (\lambda,\mu) \in \mathbb{K}^2 : \\ (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x & (\mathit{Distributivit\'e}) \\ \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y & (\mathit{Distributivit\'e}) \\ \lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x & (\mathit{Associativit\'e}) \\ 1 \cdot x = x & (\mathit{Produit par l'\'el\'ement neutre}) \end{array}$$

Notations : Les éléments de E sont appelés **vecteurs** et les éléments de \mathbb{K} scalaire. 0_E désigne le vecteur nul.

Définition

combinaison linéaire

Soit E un \mathbb{K} -espace vectoriel et $\mathcal{F}=\{x_1,\cdots,x_n\}$ une famille de n vecteurs de E. On appelle combinaison linéaire des vecteurs (x_1,\cdots,x_n) de \mathcal{F} tout vecteur u de la forme :

$$u = \lambda_1 x_1 + \dots + \lambda_n x_n = \sum_{k=1}^n \lambda_k x_k \text{ où } (\lambda_1, \cdot, \lambda_n) \in \mathbb{K}^n$$

Remarque 1.1:

- Le vecteur nul 0_E est combinaison linéaire de toute famille finie de vecteurs de E.
- Si u est combinaison linéaire des vecteurs de \mathcal{F} , alors quelque soit un vecteur $v \in E$, u est combinaison linéaire des vecteurs x_1, \dots, x_n, v .

Exemples

Exemple fondamentaux

- ① \mathbb{K}^n , $n \in \mathbb{N}$ est un \mathbb{K} -espace vectoriel; En particulier \mathbb{R} et \mathbb{R}^2 sont des \mathbb{R} -espaces vectoriels, \mathbb{C} et \mathbb{C}^2 sont des \mathbb{C} -espaces vectoriels **et** des \mathbb{R} -espaces vectoriels.
- \mathfrak{D}^{I} : Ensemble des applications définies sur un intervalle I à valeurs dans \mathbb{K} .
- ③ $\mathcal{C}^n(I,\mathbb{K})$: Ensemble des fonctions de classes \mathcal{C}^n définies sur I à valeurs dans \mathbb{K} .
- $\textcircled{4} \mathbb{K}[X], \mathbb{K}_n[X].$
- \mathfrak{G} $\mathbb{R}^{\mathbb{N}}$: ensemble des suites à éléments dans \mathbb{R} .
- 6 $\mathcal{M}_{n,p}(\mathbb{K})$: matrices n lignes, p colonnes à coefficients dans \mathbb{K} .
- ${\Bbb O}$ ${\cal V}_d(\Omega)$: Ensemble des variables aléatoires discrètes définies sur un même univers.

Propriété

Règles de calcul

Soit E un \mathbb{K} -espace vectoriel, u et v deux vecteurs de E et λ un scalaire de \mathbb{K} . Alors :

$$\begin{array}{ll} \text{(i)} \ 0 \cdot u = 0_E & \text{(ii)} \ \lambda \cdot 0_E = 0_E & \text{(iii)} \ (-\lambda) \cdot u = -(\lambda \cdot u) \\ \text{(iv)} \ \lambda \cdot (u - v) = \lambda \cdot u - \lambda \cdot v & \text{(v)} \ \lambda \cdot u = 0_E \Leftrightarrow \lambda = 0 \ \text{ou} \ u = 0_E \\ \end{array}$$

1.2 Sous-espaces vectoriels

Définition

Sous-espaces vectoriels

Soit E un \mathbb{K} -espace vectoriel. On appelle sous-espace vectoriel de E toute partie non vide de E, à la fois stable par l'addition de E et stable par la multiplication par un scalaire.

Caractérisation des sous-espaces vectoriels :

Soit E un \mathbb{K} -espace vectoriel. F est un sous-espace vectoriel de E si :

(i)
$$F \subset E$$
 (ii) $0_E \in F$ (iii) $\forall u, v \in F, \forall \lambda \in \mathbb{K}, \lambda \cdot u + v \in F$

Exemples

Exemple classiques

Dire dans chaque cas si les ensembles F sont sous-espaces vectoriels des espaces vectoriels E suivants :

•
$$E = \mathbb{R}^n : F_1 = \{(x, y) \in \mathbb{R}^2 / y = x\}; F_2 = \{(x, y, z) \in \mathbb{R}^3 / z = x + y\};$$

•
$$E = \mathbb{R}[X] : F_3 = \{P \in \mathbb{R}[X]/P'(X) = P(X)\}; F_4 = \{P \in \mathbb{R}_1[X]/P(1) = 1\}; F_5 = \{P \in \mathbb{R}_1[X]/P(1) = 0\};$$

•
$$E = \mathcal{C}^n(I, \mathbb{R}) : F_7 = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) / \forall x \in \mathbb{R}, f'(x) - af(x) = 0 \} ; F_8 = \{ f \in \mathcal{C}^2(\mathbb{R}) / f'' - 3f' + 2f = 0 \} ;$$

•
$$E=\mathcal{M}_n(\mathbb{R})$$
 : $F_9=\{M\in\mathcal{M}_2(\mathbb{R})/^tM=M\}$; $F_{10}=\{M\in\mathcal{M}_2(\mathbb{R})/M \text{ inversible}\}$;

$$F_{11} = \{ M \in \mathcal{M}_2(\mathbb{R}) / \exists (a,b) \in \mathbb{R}^2, M = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \}$$

Proprié<u>té</u>

Soit E un \mathbb{K} -espace vectoriel.

- 1 Si F est un sous-espace vectoriel, alors F muni des mêmes lois que E est un \mathbb{K} -e.v.
- ② E et 0_E sont deux sous-espaces vectoriels de E

Propriété

Soit E un \mathbb{K} -espace vectoriel.

Si F et G sont deux sous-espaces vectoriels de E, alors $F \cap G$ est un sous-espace vectoriel de E

Remarque 1.2 : Il est possible d'étendre ce résultat à l'intersection finie de n sous-espaces vectoriels de E.

Remarque 1.3: L'union de sous-espaces vectoriels de E n'est pas, en général un sous-espace vectoriel de E.

Définition

Sous-espace vectoriel engendré par une famille

Soit E un \mathbb{K} -espace vectoriel et $X=\{x_1,\cdots x_n\}$ une famille finie de vecteurs de E. L'ensemble des combinaisons linéaires d'éléments de X est un sous-espace vectoriel de E appelé sous-espace vectoriel engendré par X. On le note $Vect\{X\}$ ou encore $Vect\{x_1,\cdots,x_n\}$

Remarque 1.4 : On dit aussi que X est une famille génératrice de $\mathrm{Vect}\{X\}$ et on écrit :

$$\operatorname{Vect}{X} = {\lambda_1 x_1 + \cdots \lambda_n x_n, (\lambda_1, \cdots, \lambda_n) \in \mathbb{K}^n}$$

Exemples

ssev engendrés par une famille

- ① Dans $\mathbb C$ considéré comme $\mathbb R$ -espace vectoriel, le ss-espace vectoriel engendré par $\{1\}$ est $\mathbb R$, le ss-espace vectoriel engendré par i est l'ensemble des imaginaires pures et le ss-espace vectoriel engendré par $\{1,i\}$ est $\mathbb C$.
- ② Montrer que $F_1 = \{u \in \mathbb{R}^3/\exists (\alpha,\beta) \in \mathbb{R}^2, u = (\alpha,\alpha+2\beta,-\beta)\}$ est un \mathbb{R} -espace vectoriel.
- 4 Montrer que $F_3 = \{ f \in \mathcal{C}^2(\mathbb{R})/f'' 3f' + 2f = 0 \}$ est un \mathbb{R} -espace vectoriel.

2 Familles génératrices et libres. Bases

Définition

famille génératrice finie d'un espace vectoriel

Soit E une \mathbb{K} -espace vectoriel et soit $\mathcal{F} = \{x_1, \cdots, x_n\}$ une famille finie de vecteurs de E. Sous réserve d'existence, \mathcal{F} est dite famille génératrice de F si $F = Vect\{\mathcal{F}\}$. Autrement dit :

$$\forall u \in F, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n / u = \lambda_1 x_1 + \dots + \lambda_n x_n = \sum_{k=1}^n \lambda_k x_k$$

Remarque 2.1 Si $\mathcal{F} \subset \mathcal{F}'$ alors \mathcal{F}' est aussi une famille génératrice de F.

Définition famille libre finie

Soit E un \mathbb{K} -espace vectoriel et soit $\mathcal{F} = \{x_1, \dots, x_n\}$ une famille finie de vecteurs de E. On dit que la famille \mathcal{F} est libre si :

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \ \lambda_1 x_1 + \dots + \lambda_n x_n = 0 \Leftrightarrow \lambda_k = 0, \forall k \in [1, n]$$

Les vecteurs x_1, \cdots, x_n sont dits dans ce cas linéairement indépendants.

Définitionfamille liée

Soit E un \mathbb{K} -espace vectoriel et soit $\mathcal{F} = \{x_1, \cdots, x_n\}$ une famille finie de vecteurs de E. On dit que la famille \mathcal{F} est liée si elle n'est pas libre, autrement dit :

$$\exists (\lambda_1, \cdots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \cdots, 0)\} / \lambda_1 x_1 + \cdots + \lambda_n x_n = 0$$

Exemple

Exemple fondamental de famille libre

Toute famille de polynômes non nuls de degrés deux à deux distincts est libre

Propriété

- ① Toute sous famille d'une famille libre est libre.
- ② Si $0_E \in \mathcal{F}$ alors \mathcal{F} est liée.
- ③ Si F contient deux fois le même vecteur alors cette famille est liée.

Définition

Base finie d'un espace vectoriel

Sous réserve d'existence, on appelle base d'un espace vectoriel E toute famille de E à la fois libre et génératrice.

Exemples

- ① $\mathcal{B}_1 = ((1, -2, 0), (0, 3, 1), (1, 2, 1))$ est une base de \mathbb{R}^3
- ② $\mathcal{B}_2 = ((X-1)^2, X(X-1)^2)$ est une base de $F_2 = \{P \in \mathbb{R}_3[X]/P(1) = 0 = P'(1)\}$
- ③ $\mathcal{B}_3 = (1, X 2, (X 2)^2)$ est une base de $\mathbb{R}_2[X]$.
- \mathfrak{G} $\mathcal{B}_4 = (x \longmapsto e^x, x \longmapsto e^{2x})$ est une base de $F_4 = \{f \in \mathcal{C}^2(\mathbb{R})/f'' 3f' + 2f = 0\}$

 $\overline{}$

Exemples (suite)

⑤ Pour $(a,b) \in \mathbb{R}^2$, déterminer une base de $\mathcal{B} = \{f \in \mathcal{C}^2(\mathbb{R})/f'' + af' + bf = 0\}$ selon le nombre de solutions dans \mathbb{R} de l'équation caractéristique de l'équation différentielle y'' + ay' + by = 0.

Théorèmes

Coordonnées d'un vecteur dans une base

Si $\mathcal{B} = \{e_1, \cdots, e_n\}$ est une base de E alors tout vecteur u de E se décompose de façon unique comme combinaison linéaire des vecteurs de \mathcal{B} . Les coefficients de cette décomposition sont appelés les coordonnées de u relativement à la base \mathcal{B}

Exemples

En reprenant les bases obtenues dans l'exemple ci-dessus, déterminer les coordonnées les coordonnées de u=(a,b,c) dans la base \mathcal{B}_1 et les coordonnées de $P=1+X-X^2\in\mathbb{R}_2[X]$ dans la base \mathcal{B}_3 .

Notation

Si $\mathcal B$ est une base d'un espace vectoriel E de dimension n alors si $u=(a_1,\cdots a_n)_{\mathcal B}$ alors la la matrice des coordonnées de u dans la base $\mathcal B$ est une matrice colonne et on note $X=\mathcal M_{\mathcal B}(u)=\begin{pmatrix} a_1\\ \cdots\\ a_n \end{pmatrix}$

Remarque 2.2 Par extension, si \mathcal{B} est une base d'un \mathbb{K} -espace vectoriel E de dimension n et $\mathcal{F} = \{u_1, \cdots, u_p\}$ est une famille finie de p vecteurs de E exprimée dans cette base avec

$$u_k = (a_{1,k}, \cdots, a_{n,k}), \forall k \in [1, p]$$

alors on appelle $M=\mathcal{M}_{\mathcal{B}}(\mathcal{F})$ la matrice des coordonnées de la famille \mathcal{F} dans la base \mathcal{B} avec

$$M = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & \cdots & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix} \in \mathcal{M}_{(n,p)}(\mathbb{K})$$

Les bases canonique de \mathbb{K}^n et $\mathbb{K}_n[X]$ sont respectivement :

$$\mathcal{B}_1 = \mathcal{B}_2 =$$

3 Dimension.

Définition

espace vectoriel de dimension finie

On dit que l'espace vectoriel E est de dimension finie si E admet une famille génératrice finie ou encore s'il existe une famille F de vecteurs de E telle que $E = Vect\{F\}$.

Remarque 3.1: De toute famille génératrice finie \mathcal{F} d'un espace vectoriel E, on peut extraire une base.

Théorèmes

dimension d'un espace vectoriel

Dans un espace vectoriel E non réduit au vecteur nul et de dimension finie, toutes les bases ont le même cardinal; ce nombre est appelé dimension de E.

Remarque 3.2 Par convention, $dim(E) = 0 \Leftrightarrow E = \{0_E\}.$

Théorèmes

Dans un espace vectoriel de dimension n:

- Toute famille libre a au plus n éléments.
- Une famille libre ayant n éléments est une base.
- Toute famille génératrice a au moins n éléments.
- Une famille génératrice ayant n éléments est une base.

Théorèmes

Si F est un sous-espace vectoriel de E, alors F est de dimension finie et $\dim F \leq \dim E$.

Si les deux dimensions sont égales, alors F = E.

Définition

Rang d'une famille de vecteurs

Soit \mathcal{F} une famille finie de vecteur d'un \mathbb{K} -espace vectoriel E. On appelle rang de \mathcal{F} la dimension du sous-espace vectoriel engendré par \mathcal{F} , soit $rg(\mathcal{F}) = \dim(\operatorname{Vect}\{\mathcal{F}\})$. C'est donc aussi le plus grand nombre de vecteurs issus de \mathcal{F} formant une famille libre.

Remarque 3.3 : Le rang d'une famille de vecteurs peut se calculer comme le rang de la matrice des coordonnées de la famille dans n'importe quelle base.

Remarque 3.4 : Une famille de vecteurs est libre si, et seulement si, son rang est égale à son cardinal.