Plan d'étude des suites récurrentes

Soit f, une fonction définie sur $\mathbb R$ à valeurs réelles. L'objectif est l'étude d'une suite $(u_n)_{n\in\mathbb N}$ définie par la relation de récurrence :

$$u_{n+1} = f(u_n), \, \forall n \in \mathbb{N}$$

- ① Si on le peut, on estime le signe des termes de la suite où, mieux encore, l'intervalle auquel ces termes appartiennent à partir d'un certain rang. Une récurrence s'impose. Cette étape permet d'initier le raisonnement en démontrant que la suite est bien définie.
- ② Déterminer les seules limites possible en résolvant $f(\alpha) = \alpha$:

En effet, si (u_n) converge vers $\alpha \in \mathbb{R}$ alors $\lim_{n \to \infty} u_n = \alpha$. Par ailleurs, si f est continue en α , $\lim_{n \to \infty} f(u_n) = f(\alpha)$. Autrement dit : $\lim_{n \to \infty} u_{n+1} = \alpha = f(\alpha)$.

 \mathscr{O} En écrivant cette égalité, insister sur la **continuité** de f en α .

Remarque 1 : si par exemple la suite est positive et $\alpha < 0$, c'est fini. La suite diverge.

Remarque 2 : Si l'équation f(x) = x est impossible à résoudre, on peut souvent montrer l'existence de α grâce au théorème des valeurs intermédiaires appliqué à $g: x \longmapsto f(x) - x$ (suggéré dans l'énoncé).

- ③ Étude de la fonction f: A mener de façon suffisamment complète pour en donner une représentation graphique précise dans un repère orthonormé. Tracer dans ce repère la première bissectrice Δ d'équation y=x. Placer ensuite les premiers termes de u (on placera d'abord les points $A_0(u_0, f(u_0))$ et $B_0(u_1, u_1)$ et on poursuivra la formation des termes de la suite en plaçant à l'étape k le point $A_k(u_k, f(uk))$ et $B_k(u_{k+1}, u_{k+1})$. Conjecturer le comportement de u (regarder notamment la position de la courbe représentant f par rapport à la première bissectrice).
- 4 Utiliser le tableau de variation pour préciser éventuellement l'intervalle obtenu à la première étape. Dans la pratique, on cherche un intervalle I, stable par f. Autrement dit :

$$\forall x \in I, f(x) \in I$$
 (ou encore $f(I) \subset I$) avec $u_0 \in I$ (mais ça pourrait être u_1 ou u_2)

arnothing C'est une étape essentielle car elle permet d'établir **par récurrence** que **tous les termes** u_n sont dans un même intervalle I à partir d'un certain rang.

En effet, par une récurrence immédiate :

- $u_0 \in I$ (si on initialise avec $u_1 \in I$ alors conclure pour tout $n \in \mathbb{N}^*$).
- On suppose que $u_n \in I$ pour n fixé $(n \ge 0)$.
- Sachant que $u_{n+1} = f(u_n)$ avec $u_n \in I$ on a donc, I étant stable par f, $u_{n+1} \in I$.
- Conclusion : $\forall n \in \mathbb{N}, u_n \in I$

Intérêt : Si jamais I est un intervalle fermé borné, cette étape permet de montrer que (u_n) est **bornée**. Par application du théorème de la limite monotone, il ne reste plus qu'à montrer qu'elle est monotone pour montrer qu'elle converge, ce qui est assuré si f est croissante sur I (cf. page suivante)!

⑤ Étude de la monotonie de la suite (u_n) :

Méthode 1 (La plus rapide): Utiliser le sens de variation de f sur I:

Théorèmes

1. Monotonie des suites récurrentes

Soit (u_n) une suite définie par $u_{n+1} = f(u_n)$, $u_0 \in I$ avec $f(I) \subset I$, alors :

- Si f est croissante sur I, alors (un) est monotone.
- Si f est décroissante sur I, alors les suites (u_{2n}) et (u_{2n+1}) sont monotones, de monotonie opposée.

Démonstration

monotonie

Si f est croissante : Pour tout n entier naturel, le signe de $u_{n+2} - u_{n+1} = f(u_{n+1}) - f(u_n)$ est le même que celui de $u_{n+1} - u_n$ puisque f est croissante.

Par une récurrence immédiate, on montrer que $u_{n+1}-u_n$ est de même signe que u_1-u_0 . Ce qui assure la monotonie de u.

Si f est décroissante : Pour tout n entier naturel,

$$u_{2n+2} = f \circ f(u_{2n})$$
 et $u_{2n+3} = f \circ f(u_{2n+1})$

Les suites (u_{2n}) et (u_{2n+1}) vérifient donc la relation de récurrence $x_{n+1} = g(x_n)$ où $g = f \circ f$ est croissante par composition de deux fonctions décroissantes.

Ainsi les suites (u_{2n}) et (u_{2n+1}) sont monotones, le sens de variation étant donné par le signe de u_2-u_0 et u_3-u_1 . Or $(u_3-u_1)(u_2-u_0)=(f(u_2)-f(u_0))(u_2-u_0)\leq 0$ puisque f est décroissante. \square

 \mathscr{O} On notera que dans chacun de ces deux cas, il suffit de connaître le signe de u_1-u_0 si f est croissante et de u_2-u_0 si f est décroissante pour connaître le sens de variation de (u_n) .

Méthode 2 : On étudie sur I le signe de g(x) = f(x) - x.

- Si $\forall x \in I$, $g(x) = f(x) x \ge 0$ (la courbe de f est **au-dessus** de la première bissectrice), alors (u_n) est **croissante** (puisque $\forall n \in \mathbb{N}$, $f(u_n) u_n = u_{n+1} u_n \ge 0...$).
- Si $\forall x \in I$, $g(x) = f(x) x \le 0$ (la courbe de f est **en-dessous** de la première bissectrice), alors (u_n) est **décroissante** (puisque $\forall n \in \mathbb{N}$, $f(u_n) u_n = u_{n+1} u_n \le 0...$).

6 Synthèse:

- Si f est <u>croissante</u> sur un intervalle <u>stable I fermé borné</u> et que $\underline{u_0 \in I}$, alors la suite est **monotone** et **bornée**, elle **converge**.
- Si f est <u>croissante</u> sur un intervalle stable de la forme $I_1 =]-\infty, \alpha]$ où $\underline{u_0 \in I}$ et α est l'unique point fixe de f sur I_1 , alors la suite est **monotone**.
 - \rightarrow Si $u_0 = \alpha$, c'est fini. La suite (u_n) est constante égale à α .
 - ightarrow Si, sur I_1 , la courbe de f est au-dessus de la droite (y=x) alors (u_n) est croissante et majorée. **Elle converge**.
 - ightarrow Si, sur I_1 , la courbe de f est sous la droite (y=x) alors (u_n) est décroissante de limite infinie. On raisonnera par l'absurde en montrant que la seule limite possible α obtenue au point (2) ne peut convenir (en effet $u_0 \neq \alpha$ et $u_0 \in I_1 \Rightarrow u_0 < \alpha$ et donc $u_n \leq u_0 < \alpha$ puisque (u_n) est décroissante. Ce qui impose $\lim_{n \to \infty} u_n \leq u_0 < \alpha$. Absurde...). La suite (u_n) diverge.

- Si f est <u>croissante</u> sur un intervalle stable de la forme $I_2 = [\alpha, +\infty[$ où $\underline{u_0 \in I}$ et α est l'unique point fixe de f sur I_2 , alors la suite est **monotone** et
 - \rightarrow Si $u_0 = \alpha$, c'est fini. La suite (u_n) est constante égale à α .
 - \rightarrow Si sur I_2 la courbe de f est au-dessus de la droite (y=x) alors (u_n) est croissante et de limite infinie (raisonner par l'absurde). **Elle diverge**.
 - \rightarrow Si sur I_2 , la courbe de f est sous la droite (y=x) alors (u_n) est décroissante et minorée. La suite (u_n) converge.
- Si f est <u>décroissante</u> sur un intervalle stable comprenant le premier terme de la suite, alors (u_{2n}) et (u_{2n+1}) sont **monotones** et de sens de variations contraires. On dira que (u_n) converge si ces deux suites convergent vers la même limite.
 - On peut aussi utiliser le théorème du point fixe qui s'appuie sur le théorème des accroissements finis comme cela est rappelé ci-dessous.
- Si f n'est pas monotone sur un intervalle stable et qu'on veut montrer la convergence de (u_n) , le seul recours est là encore d'utiliser le *Théorème des accroissements finis* et de montrer que la dérivée est majorée strictement par 1 en valeur absolue sur l'intervalle I (« Théorème du point fixe ».)

Théorèmes

Théorème du point fixe

Soit (u_n) une suite définie par $u_{n+1}=f(u_n)$, $u_0\in I$ avec $f(I)\subset I$ et f de classe \mathcal{C}^1 sur I. Si : $\exists \alpha\in I/f(\alpha)=\alpha$ et $\sup_{t\in I}|f'(t)|<1$ alors

 (u_n) converge vers α .

Démonstration

Théorème du point fixe

Posons $k = \sup_{x \in I} |f'(t)|$. Par application du théorème des accroissements finis appliqué à f sur I (rappelons que $u_n \in I$, $\forall n \in \mathbb{N}$):

$$\exists c \in]\alpha, u_n[/u_{n+1} - \alpha = f(u_n) - f(\alpha) = f'(c)(u_n - \alpha)]$$

On en déduit que pour tout n entier naturel :

$$|u_{n+1} - \alpha| < k|u_n - \alpha|$$

Par une récurrence immédiate : $|u_n - \alpha| \le k^n |u_0 - \alpha|$ Or 0 < k < 1 donc $\lim_{n \to \infty} (u_n - \alpha) = 0$ ce qui assure que (u_n) converge vers α

 \mathscr{O} Cette méthode offre aussi l'avantage de proposer une majoration de la distance entre u_n et sa limite et donc, dans le cas d'un intervalle I=[a,b] fermé borné, de déterminer à partir de quel entier n, on a $|u_n-\alpha|\leq \varepsilon$. En effet, $|u_0-\alpha|\leq b-a$ puisque, $u_0,\alpha\in I$ et donc,

$$|k^n|u_0 - \alpha| \le \varepsilon \text{ dès que } k^n(b-a) \le \varepsilon \Leftrightarrow k^n \le \frac{\varepsilon}{b-a} \Leftrightarrow n \ge \ln\left(\frac{\varepsilon}{b-a}\right) \cdot \frac{1}{\ln(k)} \text{ (car } 0 < k < 1)$$

Quelques résultats supplémentaires :

Théorèmes

2. Intervalle stable et point fixe

Si f est continue sur I, intervalle fermé tel que $f(I) \subset I$, alors f admet un point fixe sur I.

Démonstration

Intervalle stable et point fixe

Ce résultat s'obtient par application du théorème des valeurs intermédiaires. Supposons I=[m,M]. Alors $f(m)\geq m$ et $f(M)\leq M$ puisque $f(I)\subset I$. D'où $g(m)\geq 0$ et $g(M)\leq 0$ où $g:x\longmapsto f(x)-x$ est continue sur I. \square

Remarque

Si f est croissante sur I et $\alpha \in I$ est un point fixe de f, alors les intervalles $I_1 = I \cap]-\infty, \alpha]$ et $I_2 = I \cap [\alpha, +\infty[$ sont des intervalles stables par f.

Ce résultat est particulièrement utile pour obtenir une majoration ou une minoration de u_n . Par exemple, si $u_0 \in I_1$ alors par une récurrence immédiate, $u_n \in I_1$, $\forall n \in \mathbb{N}$. La suite (u_n) est donc majorée...

Un exemple d'application : Résolution d'une équation par méthode numérique.

On cherche à résoudre l'équation $x-2+\frac{1}{2}\ln(x)=0$.

Montrer que l'étude de la suite (u_n) définie par : $u_{n+1}=2-\frac{1}{2}\ln(u_n)$, $u_0=\frac{3}{2}$ permet d'obtenir une approximation numérique de la solution à ε près.

Confrontez votre réponse à celle obtenue en appliquant l'algorithme de dichotomie.