2

Rappels sur l'algorithme de dichotomie

Théorèmes

1. Théorème des valeurs intermédiaires strict

Soit f une fonction d'une variable réelle continue sur [a,b], a < b, strictement monotone sur [a,b]. Si $f(a) \cdot f(b) < 0$, alors :

$$\exists!\alpha\in[a,b]/f(\alpha)=0$$

Raisonnement : Quitte à changer f en -f, on peut supposer que $f(a) \le 0 \le f(b)$.

Principe de l'algorithme : Il consiste à construire par récurrence deux suites (a_n) et (b_n) qui sont adjacentes et vérifient : $f(a_n) \le 0 \le f(b_n)$, pour tout $n \in \mathbb{N}$.

- Initialisation : On pose $a_0 = a$ et $b_0 = b$. On a bien $a_0 \le b_0$ et $f(a_0) \le 0 \le f(b_0)$.
- Hypothèse de récurrence : Pour n fixé $(n \in \mathbb{N})$, on suppose construits les termes a_n et b_n tels que :

$$a_0 \leq \cdots \leq a_{n-1} \leq a_n \leq b_n \leq b_{n-1} \leq \cdots \leq b_0$$
 et $f(a_n) \leq 0 \leq f(b_n)$

- Hérédité : Prenons $c_n = \frac{a_n + b_n}{2}$.
 - \rightarrow Si $f(c_n) \ge 0$, alors on pose $a_{n+1} = a_n$ et $b_{n+1} = c_n$.
 - \rightarrow Si $f(c_n) < 0$, alors on pose $a_{n+1} = c_n$ et $b_{n+1} = b_n$.

On a réduit l'intervalle entre a_n et b_n . D'où $[a_{n+1},b_{n+1}]\subset [a_n,b_n]$ et donc :

$$a_n \le a_{n+1} \le b_{n+1} \le b_n.$$

Rque : Nous sommes en train de construire une suite (a_n) croissante et une suite (b_n) décroissante. Par ailleurs, par construction de a_{n+1} et b_{n+1} , on a bien

$$f(a_{n+1}) \le 0 \le f(b_{n+1})$$

En effet : $f(a_{n+1})$ vaut soit $f(a_n)$ qui était négatif par hypothèse de récurrence, soit $f(c_n)$ dans le cas où $f(c_n) < 0$. De même pour $f(b_{n+1})$...

conclusion : En notant qu'à chaque étape la longueur de l'intervalle est divisée par deux, on obtient :

$$b_n - a_n = \frac{b_0 - a_0}{2^n} = \frac{b - a}{2^n} \Rightarrow \lim_{n \to \infty} (b_n - a_n) = 0$$

Si on rappelle que (a_n) est croissante et (b_n) est décroissante, on a donc bien construit deux suites (a_n) et (b_n) adjacentes vérifiant $f(a_n) \le 0 \le f(b_n)$, $\forall n \in \mathbb{N}$.

Conséquence : Les suites (a_n) et (b_n) convergent vers une même limite $l \in \mathbb{R}$. Et comme $f(a_n) \le 0 \le f(b_n)$, on a par passage à la limite et par continuité de f sur [a,b]:

$$\lim_{n\to\infty}a_n=l\Rightarrow \lim_{n\to\infty}f(a_n)=f(l) \text{ et } \lim_{n\to\infty}b_n=l\Rightarrow \lim_{n\to\infty}f(b_n)=f(l)$$

Soit : $f(l) \le 0 \le f(l)$. Conclusion : f(l) = 0