Planches d'oraux

Planche 1

- a. On considère l'équation $(E): x^2 \frac{1}{3}x \frac{1}{3} = 0$. Trouver les racines de (E) et montrer qu'elles sont absolument inférieur à 1
 - **b.** On considère la suite (u_n) définie par $u_{n+2} = \frac{1}{3}u_{n+1} + \frac{1}{3}u_n$. Montrer que $\lim_{n \to \infty} u_n = 0$ pour tout $u_0, u_1 \in \mathbb{R}$.
- $\ \ \,$ Soit a et b deux réels strictement positifs. On considère cette fois la suite $(v_n)_{n\geqslant 0}$ définie par :

$$\begin{cases} v_0 = a \\ v_1 = b \\ v_{n+2} = \sqrt{v_{n+1}} + \sqrt{v_n} \end{cases}$$

- a. Créer un programme Python avec a, b et n en paramètres et qui retourne la liste des n premiers termes $(n \ge 2)$ de la suite. Que peut-on conjecturer?
- **b.** On suppose que a > 1 et b > 1.
 - i. Montrer que v_n est strictement supérieur à 1.
 - ii. On pose $w_n = \frac{1}{2}\sqrt{v_n} 1$. Montrer que :

$$w_{n+2} = \frac{w_{n+1} + w_n}{2w_{n+2} + 4}, \forall n \in \mathbb{N}$$

- iii. En déduire que $|w_{n+2}| \leq \frac{1}{3}|w_{n+1}| + \frac{1}{3}|w_n|, \forall n \in \mathbb{N}$. iv. Pouvez-vous valider la conjecture faite en 2.a)?
- **c.** Que se passe-t-il si $a \leq 1$ et $b \leq 1$?

Planche 2

Soit a un réel strictement supérieur à 0. On considère la suite (u_n) définie par :

$$u_{n+2} = u_{n+1} + a^n u_n, \forall n \in \mathbb{N}, \text{ avec } u_0, u_1 \in \mathbb{R}_+^*$$

- ① Étudier les variations de la suite (u_n) .
- $@\ \forall a \in [1,+\infty[, \, \mbox{prouver que}\, \lim_{n \to \infty} u_n = +\infty$
- ③ On suppose désormais que $a \in]0,1[$.
 - a. Écrire un programme Python permettant le calcul de u_n pour tout entier naturel fourni en paramètre d'entrée.

On le testera avec $u_0 = 1$, $u_1 = 5$, a = 0.1, a = 0.5 et a = 0.9.

- **b.** Montrer que pour tout entier naturel non nul : $u_{n+2} \le u_{n+1}(1+a^n)$.
- **c.** Montrer que pour tout $x \in \mathbb{R}_+$, $1 + x \le e^x$.
- **d.** En déduire la convergence de la suite (u_n)

Planche 3

On se place sur I=[0,1] et on définit une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ par :

$$f_0(x) = 1$$
 et $f_{n+1}(x) = 2 \int_0^x \sqrt{f_n(t)} dt$, $\forall n \in \mathbb{N}$

- ① Déterminer pour tout $x \in I$, $f_1(x)$ et $f_2(x)$.
- ② Montrer que : $\forall n \in \mathbb{N}, \ \exists (a_n,b_n) \in \mathbb{R}_+^*/\forall x \in I, \ f_n(x) = a_n x^{b_n}.$ On vérifiera que $a_{n+1} = \frac{4\sqrt{a_n}}{b_n+2}$ et $b_{n+1} = \frac{1}{2}b_n+1.$
- $\$ Écrire une fonction Python suites d'argument n qui calcule et affiche les n+1 premiers termes de ces suites. Faites une conjecture sur leurs limites respectives.
- $\ \, \textcircled{4} \,$ Déterminer b_n en fonction de n et en déduire sa limite.
- ⑤ Montrer que $\forall n \in \mathbb{N}, a_n \geq 1$.
- © On pose $w_n = 2^n \ln(a_n)$. Montrer que $\lim_{n \to \infty} (w_{n+1} w_n) = 1$.
- En déduire $\exists n_0 \in \mathbb{N}/\forall n \geq n_0, w_{n_0} \leq w_n \leq 2(n-n_0) + w_{n_0}.$ En déduire la limite de (a_n) .

Planche 4

On considère la suite $(u_n)_{n\geq 1}$ telle que $u_1\in]0;\pi[$ et, pour tout $n\in \mathbb{N}^*$, on a : $u_{n+1}=\left(1+\frac{1}{n}\right)\sin(u_n)$.

- ① Montrer que pour tout $n \ge 3: 0 < u_n < \frac{\pi}{2}$
- ② Déterminer le seul réel vers lequel la suite (u_n) peut converger.
- 3 Représenter graphiquement u_n en fonction de n pour plusieurs valeurs de u_1 , puis émettre une conjecture sur la monotonie de la suite (u_n) .
- 4 Montrer que s'il existe un entier $n_0 \geq 4$ tel que $u_{n_0} \leq u_{n_0-1}$, alors la suite décroît strictement à partir du rang n_0 .

 On pourra pour cela, utiliser une expression de $\dfrac{u_{n+1}}{u_n}$ en fonction de u_n et u_{n-1} .
- ⑤ Est-il possible que pour tout entier $n \ge 4$, $u_n > u_{n-1}$?
- © Conclure en établissant la convergence de (u_n) .
- ® En posant pour $n \ge 1$, $x_n = \frac{u_n}{n}$, montrer que:

$$(x_{n+1}-x_n) \underset{n\to\infty}{\sim} \frac{-n^2}{6} x_n^3$$
, puis que $\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \underset{n\to\infty}{\sim} \frac{n^2}{3}$

9 En admettant que le résultat précédent permet d'établir la relation suivante : $\frac{1}{x_n^2} \sim \sum_{k=1}^n \frac{k^2}{3}$, vérifier la conjecture faite à la question 7.