2

Fonctions d'une variable réelle

Les objectifs : Reconnaître, distinguer et employer les graphes des fonctions usuelles, à savoir : Fonctions puissances d'exposant entier, polynômes, racine carrée, exponentielle et logarithme népérien (ln), fonctions exponentielle $x \longmapsto a^x$ où $a \in \mathbb{R}_+^*$, fonction logarithme décimal (log), fonctions puissances $x \longmapsto x^{\alpha}$ avec $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, fonctions circulaires, partie entière ($\lfloor \cdot \rfloor$) et valeur absolue ($\lfloor \cdot \rfloor$).

Limites, comparaison de fonctions, continuité (théorème des valeurs intermédiaires) et bijections continues (fonctions $\sqrt[n]{}$ et arctan). Résolution approchée d'une équation du type f(x) = 0.

Dérivation : Théorème de Rolle, formule des accroissements finis, recherche d'extremum, dérivées d'ordre supérieur.

Développements limités (développements usuels : exp, cos, sin, $x \mapsto 1/(1+x)$, $x \mapsto ln(1+x)$ et $x \mapsto (1+x)^{\alpha}$). Exemples d'approximations numériques des fonctions dérivées.

Calculs de limites, utilisation des équivalents usuels

Reprendre dans les cours de BCPST1 l'exercice 1 du chapitre 17, les exercices 1, 3, 4, 5, 6, 12, 13 et 14 du chapitre 23

Exercice 1 * : Continuité

Soit f une application continue sur I = [0, 1] telle que f(0) = f(1).

Pour tout n entier naturel non nul, on souhaite montrer que l'équation $f\left(x+\frac{1}{n}\right)=f(x)$ admet au moins une solution sur I.

Soit g définie sur I par $g(x) = f\left(x + \frac{1}{n}\right) - f(x)$.

Montrer que le calcul de $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right)$ permet de conclure.

En complément : Reprendre dans le chapitre 17, les exercices 15 et 17

Exercice 2 ***: Continuité

Pour tout $n \in \mathbb{N}^*$, on définit la fonction f_n par :

$$\forall x \in \mathbb{R}, f_n(x) = ne^{-x} - x$$

- ① Montrer que f_n s'annule en un unique point x_n et que $x_n > 0$.
- ② Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est strictement croissante.
- ③ Montrer que : $\lim_{n\to\infty} x_n = +\infty$ et $\lim_{n\to\infty} \frac{x_n}{\ln n} = 1$

...D'après Agro-véto 2003

Exercice 3 • : Continuité et dérivabilité

Étudier la continuité et la dérivabilité des fonctions suivantes :

①
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

②
$$g(x) = x^2 \left(1 - \frac{2}{\ln x} \right)$$

En complément : Reprendre dans le chapitre 19, les exercices 2 et 8

Pour le Théorème des valeurs intermédiaires et le théorème de la bijection, reprendre dans le chapitre 17 les exercices 10, 12, 13 et 14.

Exercice 4 * : Dérivabilité

- ① **a.** Montrer que : $\forall x \in]0,1[, 1+x \le e^x \le \frac{1}{1-x}]$
 - **b.** En déduire la limite de la suite de terme général : $u_n = \sum_{p=n}^{kn} \frac{1}{p}$ où k est un entier naturel non nul fixé.
- ② Soit f une fonction de classe C^2 sur]a,b[. Montrer que, s'il existe trois points de la courbe de f qui sont alignés, alors f'' s'annule au moins une fois sur]a,b[.

Pour le **Théorème des accroissements finis**, reprendre dans les cours de BCPST1 le chapitre 19, exercices 5, 6, 7, 10, 12, 13 et 14 ainsi que l'exercice **7** du chapitre 23.

Exercice 5 **: Dérivées de fonctions réciproques

- ① Montrer que la fonction cosinus réalise une bijection de $I = [0, \pi]$ dans [-1, 1]. On note A la réciproque de la fonction cosinus restreinte à l'intervalle I.
- ② Déterminer A(0), A(-1/2) et $A(\sqrt{3}/2)$.
- ③ Tracer le graphe de la fonction A dans le plan usuel muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.
- 4 Soit $x \in [-1, 1]$. Montrer que $\sin(A(x)) = \sqrt{1 x^2}$.
- $\$ Montrer que la fonction A est dérivable sur]-1,1[et donner l'expression de sa dérivée sous une forme simplifiée ne faisant plus intervenir de fonction trigonométrique.
- © a. Déterminer le développement limité à l'ordre 1 de la fonction $t \longmapsto \frac{1}{\sqrt{1+t}}$
 - **b.** En déduire le développement limité à l'ordre 3 en 0 de A.

...D'après Agro-véto 2015

Pour la **bijectivité** et l'expression des **fonctions réciproques**, reprendre dans les cours de BCPST1 le chapitre 17, exercices 11, 12, 16 et 17

Développements limités

Reprendre dans les cours de BCPST1 les exemples page 9 et 10 du chapitre 23bis ainsi que les exercices 1, 4, 5, 6, 7, 9, 10 et 13 de ce même chapitre

Exercice 6 • : Développements limités et branches infinies

Déterminer le comportement asymptotique des deux fonctions ci-dessous :

$$f: x \longmapsto (x-2)e^{1/x}$$
 et $g: x \longmapsto x \arctan\left(\frac{x}{x-1}\right)$

3

Ils sont tombés à l'oral de l'agro...

Exercice 7:

Soit n un entier naturel non nul. Soit la fonction f_n définie par $f_n(x) = \frac{1}{1+e^x} + nx$.

- ① Calculer $f'_n(x)$ puis $f''_n(x)$. Montrer que f_n est strictement croissante sur \mathbb{R} .
- 2 a. Montrer que l'équation $f_n(x)=0$ admet une unique solution u_n sur $\mathbb R$ et montrer que

$$-\frac{1}{n} < u_n < 0$$

- **b.** A l'aide de l'outil informatique de votre choix, conjecturer le comportement de (u_n) et conjecturer la limite de nu_n .
- $\$ Compléter le programme suivant pour trouver u_n avec une précision de e, valeur réelle strictement positive.

```
def f(n,x):
    f=1/(1+exp(x))+n*x
    return f

def dichotomie(n,e):
    a,b = ...
    while b-a ...:
        c = (a+b)/2
        if f(n,a)*f(n,c) ...:
        else:
        ...
    return ...
```

- 4 Comparer $f_n(x)$ et $f_{n+1}(x)$. En déduire que la suite (u_n) est croissante.
- \circ Justifier que la suite (u_n) converge vers 0 et calculer la limite de nu_n .
- © Montrer que $u_n + \frac{1}{2n} \equiv -\frac{1}{8n^2}$. Le contrôler à l'aide de la fonction dichotomie.

...D'après Agro-véto 2015

Exercice 8:

Soit x un réel de l'intervalle [0; 1[fixé. On définit les suites $(f_n(x))_{n\geq 1}$, $(g_n(x))_{n\geq 1}$ et $(h_n(x))_{n\geq 1}$ par :

$$f_n(x) = \prod_{k=1}^n (1+x^k), \ g_n(x) = \prod_{k=1}^n (1-x^{2k-1}) \ \text{et} \ h_n(x) = f_n(x)g_n(x).$$

On pose, sous réserve d'existence, $f(x) = \lim_{n \to \infty} f_n(x)$, $g(x) = \lim_{n \to \infty} g_n(x)$ et h(x) = f(x)g(x).

- ① Écrire un script Python qui affiche dans un repère les points de coordonnées $(f_n(x); g_n(x))$ lorsque x prend les valeurs $\frac{k}{100}$ avec $k \in \{0; \dots; 80\}$ et n = 100. Faire une conjecture d'une relation simple entre f(x) et g(x) en admettant leurs existences.
- ② Montrer que pour tout $x \in [0; 1[$, la suite $(f_n(x))_{n\geq 1}$ est croissante et que la suite $(g_n(x))_{n\geq 1}$ est décroissante.
- 3 a. Établir que :

$$\forall t \in \mathbb{R}, \ 1+t \leq e^t.$$

En déduire que, pour tout $x \in [0; 1[, f(x)]]$ existe et vérifie :

$$1 \le f(x) \le \exp\left(\frac{x}{1-x}\right).$$

- **b.** Montrer que f est continue en 0.
- **4.** Justifier l'existence de g(x) pour tout $x \in [0; 1[$.
 - **b.** Montrer que pour tout $t \in [0; 1[$ et $x \in [0; 1[$, $1 (1 x)^t \ge xt.$ (on pourra étudier une fonction de x ou utiliser la formule des accroissements finis.)
 - **c.** En déduire l'encadrement suivant, pour tout $x \in [0; 1]$:

$$\exp\left(\frac{\ln(1-x)}{1-x^2}\right) \le g(x) \le \exp\left(-\frac{x}{1-x^2}\right).$$

puis la continuité de g en 0.

- ⑤ **a.** Montrer que, pour tout $x \in [0; 1[: f_n(x^2)g_n(x^2) = f_{2n}(x)g_n(x)]$. En déduire que $h(x^2) = h(x)$.
 - **b.** Montrer que pour tout $n \ge 1$, on a : $h(x^{2^n}) = h(x)$. Conclure alors que pour tout $x \in [0; 1[, h(x) = 1.$
 - c. Ce dernier résultat confirme-t-il votre conjecture?

...D'après Agro-véto 2018