

T.D. Révisions d'intégration.

Intégration : Intégrale d'une fonction continue f sur un segment (l'existence de primitives pour une fonction continue sur un segment est admise). Lien avec la notion d'aire pour une fonction continue positive.

Propriétés de l'intégrale : Linéarité, relation de Chasles, positivité, encadrement de l'intégrale à partir d'un encadrement de la fonction. Pour a < b, majoration $|\int_a^b f(t)dt| \le \int_a^b |f(t)|dt$.

Si f est continue sur un intervalle I et $a \in I$, alors la fonction F définie sur I par $F(x) = \int_a^x f(t)dt$ est l'unique primitive de f sur I s'annulant en a.

Valeur moyenne d'une fonction continue sur un segment.

 $Compléments: \text{Sommes de Riemann sur } [0,1]: \int_0^1 f(t)dt = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n}) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}).$

Intégrations par parties. Changements de variables (« Au cours d'une épreuve, sauf dans les cas simples, la nécessité d'un intégration par parties ou d'un changement de variable sera indiquée »).

Exercice 1 * : Calculer les intégrales usuelles suivantes :

$$a)I = \int_{1}^{4} \frac{1}{\sqrt{x}} dx; \qquad b)I = \int_{0}^{\pi/6} \sin(3x) dx; \quad c) \int_{0}^{x} \sqrt{2t+1} dt; \qquad d)I = \int \frac{1}{(x+1)\sqrt{x+1}} dx$$

$$e)I = \int_{1}^{x} \left(t^{2} + \sqrt{t} + \frac{1}{t^{2}} \right) dt; \quad f)I = \int \sin^{3}(x) dx; \qquad g)I = \int_{0}^{1} \frac{e^{x}}{(e^{x}+1)^{2}} dx; \quad h)I = \int_{1}^{2} \frac{x dx}{(x^{2}+1)^{2}}$$

$$i)I = \int \frac{dx}{x^{2}+4}; \qquad j)I = \int_{0}^{1} \frac{dx}{x^{2}-4}; \qquad k)I = \int t e^{-t^{2}/2} dt; \qquad l)I = \int_{0}^{\pi/4} (2+2tan^{2}x) dx$$

Exercice 2 * : Intégration par parties et changements de variables

$$a)I = \int_0^1 \arctan(t) dt; \quad b)I = \int t^2 e^{-t^2/2} dt; \quad c)I = \int t^2 e^{-2t} dt; \quad d)I = \int \ln \left(\frac{x+1}{x-1}\right) dx$$

$$e)I = \int_{2}^{5} \frac{x dx}{\sqrt{x-1}} (\text{ avec } u = \sqrt{x-1}); \quad f)I = \int_{0}^{1} \sqrt{1-x^2} dx (\text{ avec } x = \cos u); \quad g)I = \int_{0}^{1/\sqrt{2}} \frac{dx}{(1+x^2)\sqrt{1-x^2}} dx;$$

avec, pour g), les changements de variables successifs : $x = \sin u$ et $v = \tan u$.

Exercice 3 : Intégrales et relations de récurrence

Pour
$$n \in \mathbb{N}$$
, on définit $u_n = \int_{-1}^{1} (1 - t^2)^n dt$.

- \odot Montrer que la suite (u_n) est décroissante. En déduire sa nature.
- ② Établir une relation entre u_n et u_{n+1} .
- $\$ Calculer u_0 . En déduire une expression de u_n .
- $\ \, \oplus \,$ En déduire la valeur de $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1} \binom{n}{k}$

Exercice 4 : fonctions définies par une intégrale

Pour tout réel x strictement positif, on pose

$$g(x) = \int_1^x \frac{\cos t}{t} dt$$
 et $\forall x \neq 0, f(x) = \int_x^{3x} \frac{\cos t}{t} dt.$

- \odot Étudier la parité de f.
- 2 Montrer que g est définie, continue et dérivable sur \mathbb{R}_{+}^{*} . Donner une expression de sa dérivée.
- 3 Donner une relation simple entre f et g. En déduire que f est dérivable sur \mathbb{R}^* et calculer f'(x).
- 4 A l'aide d'une intégration par parties, montrer que f admet une limite en $+\infty$.
- ⑤ Appliquer le théorème des accroissements finis pour obtenir un majoration de $|\cos t 1|$. En déduire la limite en 0 de h définie par $h(x) = \int_x^{3x} \frac{\cos t - 1}{t} dt$ pour tout $x \in \mathbb{R}^*$. Conclure sur le prolongement par continuité de f en 0.

Exercice 5 : sommes de Riemann

Soit
$$(u_n)_{n\geq 1}$$
 la suite définie par : $u_n=\sum_{k=0}^n\frac{1}{k^2+(n-k)^2},\,\forall n\geq 1.$

- 1 Montrer que $nu_n \underset{n \to +\infty}{\sim} I$ où I est l'intégrale sur l'intervalle [0,1] d'une fonction f qu'on précisera.
- ② Déterminer I grâce au changement de variable $t=2\left(x-\frac{1}{2}\right)$.
- ③ En déduire que $u_n \underset{n \to +\infty}{\sim} \frac{\pi}{2n}$. En faire la vérification grâce à une fonction Python.

1 Calcul différentiel

Exercice 1 * : Equations différentielles du premier ordre

Résoudre les ED suivantes d'inconnue $y:I\longmapsto\mathbb{R}$ supposée dérivable.

- ① y' xy = x, $I = \mathbb{R}$
- ② $y' 2y = 8x^2 8x$, $I = \mathbb{R}$
- ③ $y' + 2y = 4e^x + \sin x + \cos x$, $I = \mathbb{R}$. Ø On cherchera une solution particulière de la forme : $y : x \longmapsto ae^x + b\cos x + c\sin x$, $(a, b, c) \in \mathbb{R}^3$
- ⑤ $xy' y + \ln x = 0, I = \mathbb{R}_+^*$

Exercice 2 * : Equations différentielles du second ordre

Résoudre les ED suivantes d'inconnue $y:I\longmapsto \mathbb{R}$ supposée deux fois dérivable.

- $y'' + y = e^x$
- ② $y'' 4y' + 4y = 7\sin x \cos x$ ② On cherchera une solution particulière de la forme $y: x \longmapsto a\sin x + b\cos x$, $(a,b) \in \mathbb{R}^2$
- ③ $y'' 3y' + 2y = xe^x$. Ø On cherchera une solution particulière de la forme : $(ax^2 + bx + c)e^x$, $(a, b, c) \in \mathbb{R}^3$
- 4 $y'' 3y' + 2y = xe^{-2x}$. 6 On cherchera une solution particulière de la forme : $(\alpha x + \beta)e^x$, $(\alpha, \beta) \in \mathbb{R}^2$
- $y'' 3y' + 2y = x(e^x + e^{-2x})$

2 Problème de synthèse

Soit φ une application dérivable sur \mathbb{R}_+ . On considère l'équation différentielle

$$(\mathcal{E})$$
 $(1 - e^{-x})y'(x) + y(x) = \varphi(x).$

On note G et F les applications de \mathbb{R}^*_{\perp} dans \mathbb{R} définies par

$$\forall x \in \mathbb{R}_+^*, \quad G(x) = \int_0^x e^t \varphi(t) dt \quad \text{et} \quad \forall x \in \mathbb{R}_+^*, \quad F(x) = \frac{G(x)}{e^x - 1}$$

- ① Montrer que G et F sont des applications de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- ② a. Déterminer le développement limité de G au voisinage de 0 à l'ordre 2. En déduire le développement de F au voisinage de 0 à l'ordre $1: F(x) = \varphi(0) + \frac{x}{2}\varphi'(0) + o(x)$.
 - **b.** En déduire que F est prolongeable par continuité en 0. On notera encore F la fonction prolongée. Préciser F(0). Montrer que F est dérivable en 0 et préciser F'(0).
- ③ Résoudre sur \mathbb{R}_+^* l'équation différentielle : (\mathcal{E}_0) $(1 e^{-x})y'(x) + y(x) = 0$.
- 4 Montrer que F vérifie (\mathcal{E}) sur \mathbb{R}_{+}^{*} .
- - **b.** Vérifier que F est l'unique solution de (\mathcal{E}) sur \mathbb{R}_+^* possédant une limite finie quand x tend vers 0.
- © La fonction F est-elle une solution de (\mathcal{E}) sur \mathbb{R}_+ ?
- ⑦ On suppose, dans cette question, que l'application φ est décroissante sur \mathbb{R}_+ . Montrer que, pour tout $x \in \mathbb{R}_+^*$, on a $\varphi(x) \leq F(x)$. Ce résultat demeure-t-il pour x = 0? En déduire que F est décroissante sur \mathbb{R}_+ .