Bilan de BCPST1

L'usage de la calculatrice n'est pas autorisé au cours de l'épreuve.

1 Manipulations élémentaires avec Python:

- On considère la liste L1 = [1,3,'cinq',7,'neuf',11].
 Comment, avec une commande Python et le seul recours à L1, pouvez-vous :
 - a) Obtenir le nombre d'éléments dans L1:
 - b) afficher l'entier 7:
 - c) afficher le f de 'neuf'
 - d) savoir si l'entier 9 est dans L1:
 - e) compléter la liste pour qu'elle devienne : [1,3,'cinq',7,'neuf',11,13] (on donnera si possible deux méthodes possibles).
 - f) Compter le nombre de 7 dans la liste :
- 2. Créer la liste L2 = [1,4,9,16,25, ...,100]
- 3. On suppose avoir importé la bibliothèque numpy grâce à la commande import numpy as np. Que fait :
 - a) np.arange(10)?
 - b) np.arange(1,10)?
 - c) np.arange(1,10,2)?
 - d) np.linspace(1,10,10)?
- 4. On considère la matrice $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.
 - a) La bibliothèque numpy étant supposée importée, comment créez-vous la matrice M?
 - b) Par quelle commande récupérez-vous le 5 au centre de la matrice?
 - c) Écrire la commande qui permet d'obtenir la première ligne de cette matrice :
 - d) Écrire la commande qui permet d'obtenir la deuxième colonne de cette matrice :
 - e) Quelle commande permet de savoir si cette matrice est inversible? Selon vous, M est-elle inversible? Le justifier.

2 Suites numériques :

- 1. Exprimer en fonction de n le terme général des suites (u_n) définies par leur premier terme et une relation de récurrence et indiquer leur nature :
 - a) $\forall n \in \mathbb{N}, u_{n+1} = u_n + 2, u_0 = 1;$
 - b) $\forall n \in \mathbb{N}, v_{n+1} = v_n/3, v_1 = 2;$
 - c) $\forall n \in \mathbb{N}, w_{n+1} = -w_n/2 + 3, w_0 = 5$;
 - d) $s_{n+2} = 7s_{n+1} 10s_n$ et $s_0 = -1$, $s_1 = 3$.
 - e) $t_{n+2} = 6t_{n+1} 9t_n$ et $t_0 = 5$, $t_1 = -2$.

- 2. Écrire une ligne de commande Python permettant de calculer la liste LU des 20 premiers termes de la suite $(w_n)_{n>0}$.
- 3. On suppose avoir importé les bibliothèques numpy et matplotlib.pyplot. Écrire deux lignes de commande n'utilisant que les fonctions np.arange et plt.plot et permettant de visualiser à l'écran l'évolution des termes de cette suite. Que devrait-on observer?

Fonctions d'une variable réelle

. Soit
$$f$$
 définie par $f(x) = x\sqrt{\frac{1-x}{1+x}}$.

- ① Donner l'ensemble de définition de f et de dérivabilité de f.
- ② Les bibliothèques numpy et matploltlib.pyplot ayant été importées, donner le moyen de représenter le graphe de f sur son ensemble de dérivabilité.
- $\$ Calculer la dérivée de f et dresser son tableau de variation.
- ① Donner l'allure de la fonction.

Algèbre linéaire

On considère deux applications f_1 et f_2 définies toutes deux sur \mathbb{R}^3 par :

$$f_1(x, y, z) = (2x + y, x - z)$$
 et $f_2(x, y, z) = (x - y, y - z, z - x)$

- ① Dire si ces applications sont linéaires. Le prouver pour l'une d'entre elle. Sont-elles des endomorphismes?
- 2 Déterminer leur noyau.
- 3 Dire pour chacune d'entre elle si elle est injective, surjective ou bijective.